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Abstracts. In present paper we consider a class of 3-dimensional diffeomorphisms with finite hyperbolic chain
recurrent set and finite number of orbits of heteroclinic tangencies. We prove that necessary conditions for
topological conjugacy of two diffeomorphisms from this class is a generalization of moduli of stability for
analogous two-dimensional systems.
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Introduction

According to S.Newhouse and J. Palis [11], there is an open set of arcs that start in Morse-
Smale diffeomorphism and have first bifurcation point at diffeomorphism with heteroclinic
tangency. In survey [1] bifurcations of systems from boundary of set of Morse-Smale
type diffeomorphisms are described; this boundary includes systems with non-transversal
intersections of invariant manifolds. Obviously, heteroclinic tangency of invariant manifolds is
not structurally stable situation. Moreover, in such situation continuous topological invariants
(moduli of stability) appear.

J. Palis was one of the first who noticed existence of moduli of stability [13]. He discovered
that even two-dimensional diffeomorphisms with heteroclinic one-sided tangency already have
moduli. Further advance in this direction was done by W. de Melo and S. J. van Strien
in [8] where they found necessary and sufficient conditions for diffeomorphism of orientable
surface to have finite moduli of topological stability; these moduli fully describe all classes of
topological conjugacy in some neighbourhood of such diffeomorphisms.

T.M. Mitryakova and O.V. Pochinka obtained a topological classification for a class of
orientable surface diffeomorphisms with finite numbers of moduli of stability [9]. Radical
difference between result of this paper and paper [8] is that the classification was done not
only for “near” systems from some neighbourhood, but for “far” systems too.

There are only few results known in case of higher dimensions. In S.Newhouse, J.Palice
and F.Takens’ paper [12] has been proven a necessary condition for topological conjugacy
of two diffeomorphisms with one orbit of one-sided heteroclinic tangency. In J.Palis and W.
de Melo’s paper [6] n-dimensional manifolds’ diffeomorphisms with one orbit of one-sided
heteroclinic tangency are considered and classification of diffeomorhphisms in neighbourhood
is presented.

1This paper was supported by the Russian Foundation for Basic Research (project nos. 12-01-00672-a,
13-01-12452-ofi-m and by The Ministry of education and science of Russia 2012-2014 (grant 1.1907.2011).
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In present paper we study necessary conditions for topological conjugacy of 3-manifolds’
diffeomorphisms with few orbits of one-sided heteroclinic tangency.

1. Formulation of results

In present paper we consider a class of diffeomorphisms Ψ ⊂ Diff4(M3). We say that
orientation preserving diffeomorphism of smooth manifold M3 is from class Ψ if it satisfies
following conditions:

1) chain reccurrent set Rf is finite and consists of hyperbolic fixed points. Eigenvalues of
Df at fixed points are positive and have no resonances2 until third order;

2) wandering set of diffeomorphism f contains finite number of heteroclinic tangency
orbits.

Let p, q be different hyperbolic saddle points of diffeomorphism f such that intersection
W s

p ∩W u
q is non-empty. Any point x ∈W s

p ∩W u
q is called a point of heteroclinic intersection.

Further characterizing of point x is based on whether intersection is transversal or non-
transversal. Two smooth submanifolds N1 and N2 ( N1, N2 ⊆ M3) are intersected
transversally at point x ∈ (N1 ∩N2) if TxN1+TxN2 = TxM

3. Let x be an isolated tangency
point of two-dimensional manifolds N1 and N2, N1, N2 ⊂ M3; then x is a one-sided
tangency point if there exists neighbourhood Vx of point x such that N2 intersects not more
than one connected component of Vx \ N1. For example, any isolated point of tangency of
two-dimensional invariant manifolds of 3-dimensional diffeomorphism f is one-sided tangency
point.

Let σ be a saddle fixed point of diffeomorphism f ∈ Ψ. Denote by Jσ : R3 → R3 a
linear diffeomorphism defined by Jordan normal form of linearization Df in neighbourhood
of σ. The origin O(0, 0, 0) is a saddle point of Jσ. In section 2 we construct examples of
Jσ-invariant neighbourhood of point O for each type of Jordan form.

Definition 1. We say that f -invariant neighbourhood Uσ of saddle fixed point σ is C1-
linearizing if there exists C1-diffeomorphism ψσ : Uσ → UJσ that conjugates f

∣∣∣
Uσ

with Jσ
∣∣∣
UJσ

.

The following lemma is proven in section 2

Lemma 1. For any saddle fixed point σ of diffeomorphism f ∈ Ψ exists linearizing
neighbourhood.

We say that point a is in A if it is a point of heteroclinic tangency of two-dimensional
invariant manifolds. For any point a ∈ A we define saddle points σsa and σua such that
a ∈ W s

σs
a
∩W u

σu
a
. Obviously saddle point σsa has one-dimensional unstable manifold and σua

has one-dimensional stable manifold. Denote by µa and λa eigenvalue that corresponds to
one-dimensional eigenspace for Jσs

a
and for Jσu

a
respectively.

2Recall that the set of eigenvalues (ρ1, ρ2, . . . , ρn) of operator A is called resonant if exist non-negative

integers i ∈ {1, . . . , n}, mj (j = 1, . . . , n), |m| =
n∑

j=1

mj ≥ 2 such that ρi = ρm1
1 · ρm2

2 · . . . · ρmn
n . The number

|m| is called an order of the resonance.
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For any point a we define parameter Θa and put it equal to
lnµa
lnλa

. The following theorem

has been proven in article [12] in general setting for manifolds of dimension greater or equal
than 2. For sake of completeness we prove it in our case.

Theorem 1. Suppose that f, f ′ ∈ Ψ are topologically conjugated via homeomorphism h such
that h(a) = a′ for point a ∈ A, h(σsa) = σsa′, h(σua ) = σua′. Then Θa = Θa′.

Recall that Uσs
a
= ψ−1

σs
a
(UJσs

a
) and Uσu

a
= ψ−1

σu
a
(UJσu

a
) are linearizing neighbourhoods.

Denote by Ua the connected component of Uσs
a
∩ Uσu

a
that contains point a. For any point

p ∈ Ua put by definition

ps = ψσs
a
(p) = ([p]sx, [p]

s
y, [p]

s
z),

pu = ψσu
a
(p) = ([p]ux, [p]

u
y , [p]

u
z ),

ga = ψσu
a
◦
(
ψσs

a

∣∣∣
Ua

)−1
: ψσs

a
(Ua) → ψσu

a
(Ua).

Coordinate expression of map ga is

ga(x, y, z) = (ξa(x, y, z), ηa(x, y, z), χa(x, y, z)).

Now consider a subclass Ψ∗ ⊂ Ψ with diffeomorphisms such that Θa is irrational for any
point a ∈ A. Let a and d be points from A such that σsd = σsa, σud = σua , and derivatives

βa =
∂χa

∂z
(as) and βd =

∂χd

∂z
(ds) have same sign. By definition, put τad = |βa/βd|1/ lnµa . The

main result of present paper is the following theorem:

Theorem 2. Suppose that f, f ′ ∈ Ψ∗ are topologically conjugated via homeomorphism h
such that h(a) = a′, h(d) = d′ for points a, d ∈ A such that βa· = βd > 0, h(σsa) = σsa′
and h(σua ) = σua′ . Then τad = τa

′
d′ .

2. Linearizing neighborhood

Recall that by Jσ : R3 → R3 we denote linear diffeomorphism defined by Jordan normal
form of linearization Df at saddle point σ. Suppose σ has two-dimensional stable manifold;
then there are three possibilities for diffeomorphism Jσ : R3 → R3 and Jσ-invariant
neighbourhood UJσ of origin:

1. Jσ(x, y, z) = (λ1x, λ2y, µz), where 0 < λ1, λ2 < 1 and µ > 1;

UJσ =

{
(x, y, z) ∈ R3 :

(
x|z|− log

µ
λ1

)2
+
(
y|z|− log

µ
λ2

)2
≤ 1

}
.

2. Jσ(x, y, z) = (λx+ y, λy, µz), where 0 < λ < 1 and µ > 1;

UJσ =

{
(x, y, z) ∈ R3 : |z|−2 logµ λ ·

(
y2 − y

λ lnµ
· ln |z|+ x

)2

≤ 1

}∪
{z = 0} .

3. Jσ(x, y, z) =
(
ρ · (x · cosφ− y · sinφ), ρ · (x · sinφ+ y · cosφ), µz

)
, where 0 < ρ < 1 and

µ > 1;
UJσ =

{
(x, y, z) ∈ R3 : (x2 + y2) · |z|− log

µ
ρ ≤ 1

}
.
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Рис. 1. Linearizing neighborhood UJσ for Jσ(x, y, z) = (λ1x, λ2y, µz)

Similar formulas can be written in case when saddle fixed point σ has two-dimensional
unstable manifolds.

Lemma 2. Any saddle fixed point σ of diffeomorphism f ∈ Ψ has linearizing neigbourhood.

Proof. According to Belitskii’ theorem (see [2], chapter 6, §5 or [15], theorem 3.20), since
f ∈ Diff4(M3) and has no resonances until third order, in neighbourhood of σ diffeomorphism
f is conjugated with its differential via C1 coordinate transformation. In other words, for map
f ∈ Ψ exist neighbourhood Vσ of saddle point σ, neighbourhood VO of origin O(0, 0, 0), and
C1-diffeomorphism ψ̄σ : Vσ → VO which conjugates f |Vσ with Dfσ|VO

. Put by definition
Ṽσ =

∪
n∈Z

fn(Vσ) and ṼO =
∪
n∈Z

Dfnσ (VO). Since W s
σ and W u

σ are submanifolds of M3

(this can be done like in [10], theorem 1), diffeomorphism ψ̄σ extends to a diffeomorphism
ψ̃σ : Ṽσ → ṼO; we put by definition ψ̃σ(x) = Df−m

σ (ψ̄σ(f
m(x))) where m is an integer

number such that fm(x) ∈ Vσ. Diffeomorphism Dfσ|ṼO
is conjugated with its Jordan form

Jσ by linear coordinate transformation S : R3 → R3.
For any k ∈ N put by definition

Uk
Jσ =

{
(x, y, z) ∈ R3 : (

√
kx,

√
ky, z) ∈ UJσ

}
.

Choose k ∈ N such that Uk
Jσ

⊂ ṼO. Note that Jσ

∣∣∣
Uk
Jσ

is conjugated with Jσ

∣∣∣
UJσ

by

diffeomorphism h(x, y, z) = (
√
kx,

√
ky, z). It now follows that Uσ = ψ̃−1

σ ◦ S−1(Uk
Jσ
) is a

required linearizing neighbourhood with conjugacy

ψσ = h ◦ S ◦ ψ̃σ : Uσ → UJσ .

3. Auxiliary statements
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Lemma 3. For the map ga(x, y, z) = (ξa(x, y, z), ηa(x, y, z), χa(x, y, z)) the following

relations holds:
∂χa

∂x
(as) = 0,

∂χa

∂y
(as) = 0,

∂χa

∂z
(as) ̸= 0.

Proof. There is a following correspondence between W s
σs
a
, W u

σu
a

and their images in linearizing
neighbourhoods UJσs

a
, UJσu

a
:

• plane Oxy ∈ UJσs
a

corresponds to W s
σs
a

• surface ψσs
a
(W u

σu
a
) in UJσs

a
corresponds to W u

σu
a
;

• plane Oxy ∈ UJσu
a

corresponds to W u
σu
a
;

• surface ψσu
a
(W s

σs
a
) in UJσu

a
corresponds to W s

σs
a
.

Let a be the tangency point of W s
σs
a

and W u
σu
a
. Since ψσs

a
and ψσu

a
are diffeomorphisms,

points ψσs
a
(a) and ψσu

a
(a) will be heteroclinic tangency points of images of W s

σs
a

and W u
σu
a

in neighbourhoods UJσs
a

and UJσu
a

(see [7]).
Now consider two smooth curves on plane Oxy ⊂ UJσs

a
that pass through point as. Let the

tangent vectors to these curves at point as be equal to (1, 0, 0) and (0, 1, 0) respectively. Map
ga(x, y, z) sends these curves to curves on surface ψσu

a
(W s

σs
a
) ⊂ UJσu

a
. Tangent vectors to curve

images at point au must have zero z-coordinate because curves touch plane Oxy ⊂ UJσu
a

at
point au. Suppose that curves were parameterized by a parameter t; then by chain rule we
obtain

 ξ′t
η′t
χ′
t

 =


∂ξa
∂x

∂ξa
∂y

∂ξa
∂z

∂ηa
∂x

∂ηa
∂y

∂ηa
∂z

∂χa

∂x

∂χa

∂y

∂χa

∂z

 ·

 x′t
y′t
z′t

 ,

where the matrix of partial derivatives is a Jacobi matrix for map ga(x, y, z). Substituting
tangent vector in right hand side for (1, 0, 0) and (0, 1, 0), we obtain that tangent vectors

to curve images are equal to (
∂ξa
∂x

,
∂ηa
∂x

,
∂χa

∂x
) and (

∂ξa
∂y

,
∂ηa
∂y

,
∂χa

∂y
) respectively. Since curve

images touch plane Oxy ⊂ UJσu
a

we get that
∂χa

∂x
= 0 and

∂χa

∂y
= 0. However, ga(x, y, z)

is a diffeomorphism and det Dga(a
s) ̸= 0, so we necessarily have that

∂χa

∂z
̸= 0.

In further theorems and lemmas we will often refer to the following sentence:

Proposition 1. Let σ be a saddle fixed point and Jσ be one of the Jordan forms mentioned
earlier. Then for any sequence {rn}, rn ∈ UJσ \ Oz that tends to r ∈ (Oz \ O) exist
subsequence {rnj}, sequence {kj}, kj → +∞ and point q ∈ Oxy \{O} such that {fkj (rnj )}
tends to point q (the proof is analogous to the proof of lemma 2.1.1 in [3]).

Let {aν} ⊂ (Ua \W u
σu
a
) be the sequence of points such that {aν} tends to a ∈W s

σs
a
∩W u

σu
a

as n → +∞ and there exist positive constants C1 and C2 such that
∣∣∣∣ [aν ]sx − [a]sx

[aν ]sz

∣∣∣∣ < C1

ISSN 0203–3755 Динамические системы, том 3(31), No.3-4
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Рис. 2. Illustration for lemma 4

and
∣∣∣∣ [aν ]sy − [a]sy

[aν ]sz

∣∣∣∣ < C2. Note that these inequalities disallow to take points from W s
σs
a
, i.e.

{aν} ⊂ Ua \ (W u
σu
a
∪W s

σs
a
). From proposition 1 it follows that there exist subsequence {aνn},

sequences {kn} and {mn}, point b ∈ (W u
σs
a
\ σsa) and point c ∈ (W s

σu
a
\ σua ) such that

lim
n→∞

kn = +∞, lim
n→∞

mn = +∞, {bn = fkn(aνn)} and {cn = f−mn(aνn)} tend to b and c

respectively (see fig. 2). For the sake of briefness we denote by {an} a sequence {aνn}.

Lemma 4. lim
n→∞

mn

kn
= − lnµa

lnλa
.

Proof. Since cn = f−mn(an) and an = f−kn(bn), it follows that

[cn]
u
z = λ−mn

a · [an]uz , [bn]
s
z = µkna · [an]sz.

Consider ratio
[cn]

u
z

[bn]sz
= λ−mn

a µ−kn
a · [an]

u
z

[an]sz
. Term

[an]
u
z

[an]sz
can be expressed as

[an]
u
z

[an]sz
=
χa([an]

s
x, [an]

s
y, [an]

s
z)

[an]sz
=
χa([an]

s
x, [an]

s
y, [an]

s
z)− χa([a]

s
x, [a]

s
y, [a]

s
z)

[an]sz − [a]sz
.

Applying mean value theorem, we obtain

χa([an]
s
x, [an]

s
y, [an]

s
z)− χa([a]

s
x, [a]

s
y, [a]

s
z)

[an]sz − [a]sz
=

=

∂χ̂a

∂z
([an]

s
z − [a]sz) +

∂χ̂a

∂x
([an]

s
x − [a]sx) +

∂χ̂a

∂y
([an]

s
y − [a]sy)

[an]sz − [a]sz
=

=
∂χ̂a

∂z
+
∂χ̂a

∂x
· [an]

s
x − [a]sx

[an]sz − [a]sz
+
∂χ̂a

∂y
· [an]

s
x − [a]sx

[an]sz − [a]sz
,
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where
∂χ̂a

∂x
,
∂χ̂a

∂y
,
∂χ̂a

∂z
are the values of corresponding partial derivatives at the intermediate

point of segment with a and an as an end points. Clearly, the limit of this expression is

equal to
∂χa

∂z
(as) as n tends to infinity; it can be easily shown since

∣∣∣∣ [an]sx − [a]sx
[an]sz

∣∣∣∣ and∣∣∣∣ [an]sy − [a]sy
[an]sz

∣∣∣∣ are bounded and
∂χa

∂x
,
∂χa

∂y
are continuous at point as and are equal to zero.

Taking logarithm of
[cn]

u
z

[bn]sz
, dividing by −kn · lnλa and rearranging terms, we obtain

mn

kn
+

lnµa
lnλa

=
1

kn · lnλa
·

(
ln

[an]
u
z

[an]sz
− ln

[cn]
u
z

[bn]sz

)
.

Expression in right hand side tends to ln
∂χa

∂z
(as)− ln

[c]uz
[b]sz

as n→ +∞, so

lim
n→∞

mn

kn
= − lnµa

lnλa
.

The proof of lemma 5 uses ideas from articles [5] (proof of lemma 2.3) and [9].
By ℓu+σs

a
(ℓu−σs

a
) and ℓs+σu

a
(ℓs−σu

a
) denote separatrices of invariant manifolds W u

σs
a

and W s
σu
a

such that ψσs
a
(ℓu+σs

a
) = OZ+ = {z ∈ OZ : z > 0} ( ψσs

a
(ℓu−σs

a
) = OZ− = {z ∈ OZ : z < 0})

and ψσu
a
(ℓs+σu

a
) = OZ+ ( ψσu

a
(ℓs−σu

a
) = OZ−).

Lemma 5. Let a ∈ A be the point of heteroclinic tangency. Suppose that Θa is irrational
number. Then for any point b ∈ ℓu+σs

a
exists εa ∈ {+,−} such that for any point c ∈ ℓsεaσu

a
exist

sequence {an} → a and sequences {mn} → +∞, {kn} → +∞ such that lim
n→∞

fkn(an) = b,

lim
n→∞

f−mn(an) = c.

Proof. Put εa = + if
∂χa

∂z
(as) > 0 and put it equal to − if

∂χa

∂z
(as) < 0 For the sake of

being definite, take εa = + and c ∈ ℓs+σu
a
. Consider a sequence of points {αm} such that

[αm]sx = [a]sx, [αm]sy = [a]sy, [αm]uz = λma [c]uz .

Since c ∈ ℓs+σu
a

then inequality [αm]uz > 0 holds for any point of sequence {αm}. Put by

definition βm =
[αm]uz
[αm]sz

. From
[αm]sx − [a]sx

[αm]sz
= 0 and

[αm]sy − [a]sy
[αm]sz

= 0 it follows that

lim
m→∞

βm =
∂χa

∂z
(as) = βa (see lemma 4). Put be definition

sm =
ln[αm]sz
lnµa

=

ln

(
1

βm
[αm]uz

)
lnµa

=

ln

(
1

βm
λma [c]uz

)
lnµa

=

ln

(
[c]uz

1

βa
λma

βa
βm

)
lnµa

;

then rearranging of terms gives

sm =

ln

(
[c]uz

1

βa

)
lnµa

+

ln
βa
βm

lnµa
+m

lnλa
lnµa

.
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Put by definition θ =

ln

(
[c]uz

1

βa

)
lnµa

and ζm =

ln
βa
βm

lnµa
; then sm = θ + ζm +m

lnλa
lnµa

. Note

that
lnµa
lnλa

= Θa < 0, θ = const, lim
m→∞

ζm = 0 and lim
m→∞

sm = −∞. Consider the

mapping y : R → R where y = x + ωa and ωa =
1

Θa
. This map induces a diffeomorphism

ŷ : S1 → S1 via covering map p(x) = e2πix. By construction ŷ is a rotation by angle 2πωa

where ωa < 0 and {θ + mωa} =
∪

m∈N
ym(θ). Since Θa is irrational then ωa is irrational

too and p(
∪

m∈N
ym(θ)) is dense on circle (see [4], proposition 1.3.3). Then sequence p(sm)

is also dense in circle because lim
m→∞

ζm = 0. For any m number sm can be expressed as
sm = ξm + s̃m where ξm is an integer part of sm and s̃m ∈ [0, 1). From lim

m→∞
sm = −∞

follows that lim
m→∞

ξm = −∞. Since {s̃m} is dense in [0, 1), set {µs̃ma } is dense in [1;µa).

Let q be the integer number such that µqa ≤ [b]sz < µq+1
a ; then µq+s̃m

a is dense in [µqa, µ
q+1
a ).

Hence, for any point b ∈ ℓu+σs
a
, b = (0, 0, [b]sz) exists subsequence {s̃mn} such that [b]sz = µδ+q

a

where δ = lim
n→∞

s̃mn . It now follows that

[b]sz = µqa lim
n→∞

µs̃mn
a = µqa lim

n→∞
µsmn
a µ−ξmn

a = µqa lim
n→∞

µ−ξmn
a esmn lnµa =

= µqa lim
n→∞

µ−ξmn
a exp

(
ln[αmn ]

s
z

lnµa
lnµa

)
= µqa lim

n→∞
µ−ξmn
a [αmn ]

s
z.

Put by definition −ξmn + q = kn, {an} = {αmn}, bn = fkn(an), cn = f−mn(an). Obviously
{an} is a required sequence.

Lemma 6. Let L : R3 → R3 be the linear diffeomorphism such that L(Oz) = Oz
and L(Oxy) = Oxy. Suppose that L|Oz acts like a homothety with coefficient µ >
1 and for any point P ∈ Oxy iterations Ln(P ) tend to O as n → +∞. Let
Φ = (Φ1(x, y, z),Φ2(x, y, z),Φ3(x, y, z)) be a diffeomorphism that commutes with L; also,

Φ(Oxy) = Oxy. Then the derivative
∂Φ3

∂z
is constant at plane Oxy and is non-zero.

Proof. Since plane Oxy is invariant under map Φ then it is true that Φ3(x, y, 0) ≡ 0 According
to Hadamard’s lemma (see formulation and proof in [14] ), function Φ3 can be expressed as

z · g(x, y, z) where g(x, y, z) is continuous function such that g(x, y, 0) =
∂Φ3

∂z

∣∣
(x,y,0)

. Since
maps L and Φ commute then for any n ∈ Z maps Ln and Φ commute too. Now consider the
sequence of points {(xn, yn, zn)}n∈N such that xn = x∗, yn = y∗, zn = µ−2n where x∗ and
y∗ are the coordinates of arbitrary point from plane Oxy. Apply equality Φ ◦ Ln = Ln ◦ Φ
to (xn, yn, zn) and calculate the z-coordinate of result. After that we obtain equality

µnzn · g(Ln|Oxy(xn, yn), µ
nzn) = µnzn · g(xn, yn, zn),

which also can be written as

g(Ln|Oxy(xn, yn), µ
nzn) = g(xn, yn, zn).
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Passing to the limit, we obtain that g(0, 0, 0) = g(x∗, y∗, 0), i.e. for any x∗ and y∗

∂Φ3

∂z

∣∣
(x∗,y∗,0)

=
∂Φ3

∂z

∣∣
(0,0,0)

. From Φ3(x, y, 0) ≡ 0 follows that
∂Φ3

∂x

∣∣
(x,y,0)

≡ ∂Φ3

∂y

∣∣
(x,y,0)

≡ 0

and
∂Φ3

∂z

∣∣
(0,0,0)

̸= 0 because diffeomorphism Φ. has non-zero determinant of Jacobi
matrix.

Lemma 7. For any points d, a ∈ A such that σsd = σsa and σud = σua , parameter τad doesn’t
depend on choice of linearizing neighbourhoods of saddle point σsd and σud .

Proof. Recall that τad =

∣∣∣∣βaβd
∣∣∣∣1/lnµa

, where βa =
∂χa

∂z
(as) and βd =

∂χd

∂z
(ds) for points

a, d ∈ A. It’s sufficient to prove that ratio
βa
βd

doesn’t depend on choice of diffeomorphisms

ψσs
a
: Uσs

a
→ UJσs

a
and ψσu

a
: Uσu

a
→ UJσu

a
.

Recall that for point a ∈ A mapping ga(x, y, z) was defined earlier as

ga = ψσu
a
◦ (ψσs

a
|Ua)

−1 : ψσs
a
(Ua) → ψσu

a
(Ua),

where Ua is a connected component of Uσs
a
∩ Uσu

a
, which contains point a . Suppose that

we’ve chosen another linearizing neighbourhoods Ũσs
a
, Ũσu

a
and diffeomorphisms

ψ̃σs
a
: Ũσs

a
→ UJσs

a
, ψ̃σu

a
: Ũσu

a
→ UJσu

a

that don’t coincide with ψσs
a

and ψσu
a

respectively. By Ũa denote the connected component
of Ũσs

a
∩Ũσu

a
, which contains point a. By definition, put g̃a = ψ̃σu

a
◦(ψ̃σs

a
|Ua)

−1; the coordinate
expression for g̃a will be

g̃a(x, y, z) = (ξ̃a(x, y, z), η̃a(x, y, z), χ̃a(x, y, z)).

Then
g̃a = ψ̃σu

a
◦ ψ−1

σu
a
◦ ψσu

a
◦ ψ−1

σs
a
◦ ψσs

a
◦ ψ̃−1

σs
a
.

Put by definition Ψs = ψ̃σs
a
◦ ψ−1

σs
a

and Ψu = ψ̃σu
a
◦ ψ−1

σu
a
; after that we obtain g̃a = Ψu ◦ ga ◦

(Ψs)−1. By construction, diffeomorphisms Ψs and Ψu commute with linear diffeomorphisms
Jσs

a
and Jσu

a
respectively. Put by definition

Ψs(x, y, z) = (Ψs
1(x, y, z),Ψ

s
2(x, y, z),Ψ

s
3(x, y, z))

and
Ψu(x, y, z) = (Ψu

1(x, y, z),Ψ
u
2(x, y, z),Ψ

u
3(x, y, z)).

From Ψs(Oxy) = Ψu(Oxy) = Oxy it follows that Ψs
3(x, y, 0) ≡ Ψu

3(x, y, 0) ≡ 0; obviously
∂Ψs

3

∂x
(x, y, 0) ≡ ∂Ψs

3

∂y
(x, y, 0) ≡ 0 and

∂Ψu
3

∂x
(x, y, 0) ≡ ∂Ψu

3

∂y
(x, y, 0) ≡ 0. Note that from

g̃a = Ψu ◦ ga ◦ (Ψs)−1 follows that

Dg̃a

∣∣∣
([ã]sx,[ã]

s
y,0)

= DΨu
∣∣∣
([a]ux ,[a]

u
y ,0)

·Dga
∣∣∣
([a]sx,[a]

s
y ,0)

·D(Ψs)−1
∣∣∣
([ã]sx,[ã]

s
y,0)

,
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where Jacobi matrices are taken at point a ∈ A. According to lemmas 3 and 6, Jacobi
matrices have following form:

Dga

∣∣∣
([a]sx,[a]

s
y ,0)

=

∗ ∗ ∗
∗ ∗ ∗

0 0
∂χa

∂z
(as)

 , DΨu
∣∣∣
([aux ],[a

u
y ],0)

=

∗ ∗ ∗
∗ ∗ ∗

0 0
∂Ψu

3

∂z
(au)

 ,

D(Ψs)−1
∣∣∣
([ãsx],[ã

s
y],0)

=

∗ ∗ ∗
∗ ∗ ∗

0 0
(∂Ψs

3

∂z

)−1
(ãs)

 ,

where star signs denote coefficients that are irrelevant to the proof. Multiplying Jacobi
matrices, we get equality

∂χ̃a

∂z

∣∣∣∣
([ã]sx,[ã]

s
y ,0)

=
∂Ψu

3

∂z

∣∣∣∣
([a]ux ,[a]

u
y ,0)

· ∂χp

∂z

∣∣∣∣
([a]sx,[a]

s
y ,0)

·
(
∂Ψ3

s

∂z

)−1∣∣∣∣
([ã]sx,[ã]

s
y ,0)

which can be combined with lemma 6 and rewritten as

∂χ̃p

∂z

∣∣∣∣
([ã]sx,[ã]

s
y,0)

=
∂Ψu

3

∂z

∣∣∣∣
(0,0,0)

· ∂χp

∂z

∣∣∣∣
([a]sx,[a]

s
y ,0)

·
(
∂Ψ3

s

∂z

)−1∣∣∣∣
(0,0,0)

.

The same formula holds for point d ∈ A. This means that

β̃a

β̃d
=

∂χ̃a

∂z
(ãs)

∂χ̃d

∂z
(d̃s)

=

∂Ψu
3

∂z
(0, 0, 0)

∂χa

∂z
(as)

∂Ψs
3

∂z
(0, 0, 0)

∂Ψu
3

∂z
(0, 0, 0)

∂χd

∂z
(ds)

∂Ψs
3

∂z
(0, 0, 0)

=

∂χa

∂z
(as)

∂χd

∂z
(ds)

=
βa
βd
.

Suppose that Ûas is some euclidean neighbourhood of tangency point as ∈ UJσs
a
,

Ûa = ψ−1
σs
a
(Ûas) ⊂ Ua. Suppose that partial derivative

∂χa

∂z
doesn’t change sign in Ûas (the

existence of such neighbourhood follows from continuity of partial derivative). Also suppose
that ψσs

a
(W u

σu
a
∩ Ûa) intersects exactly one connected component of Ûas \ ψσs

a
(W s

σs
a
∩ Ûa)

(this is possible because of one-sidedness of tangency). By Û+
as and Û−

as denote sets
{p ∈ Ûas : [p]

s
z > 0} and {p ∈ Ûas : [p]

s
z < 0} respectively. Also denote by εa the sign of

partial derivative
∂χa

∂z
(as); sign that is opposite to εa we will denote by εa. Let a and a′

be the points of heteroclinic tangency, h(a) = a′. Suppose that for neighbourhood Uσs
a

holds
h(Uσs

a
) ⊆ Uσs

a′
. It’s always possible to choose such linearizing neighbourhood. Suppose that

h(Uσs
a
) ̸⊆ Uσs

a′
; then there exists k ∈ N such that h(Uk

σs
a
) ⊆ Uσs

a′
, where Uk

σs
a
= ψ−1

σs
a
(Uk

Jσs
a
)

(this observation is similar to the proof of lemma 2). So, linearizing neighbourhood Uk
σs
a

satisfies
this condition. Then we can define the homeomorphism ĥs : ψσs

a
(Uσs

a
) → ψσs

a′
(h(Uσs

a
)) by

formula ĥs = ψσs
a′
hψ−1

σs
a
. Point a′s is an image of point as under the mapping ĥs; put by

definition Ûa′s = ĥs(Ûas). For neighbourhood Ûa′s we define sets Û+
a′s and Û−

a′s in similar
manner as for Ûas . Note that analogous constructions can be made to define a homeomorphism
ĥu : ψσu

a
(Uσu

a
) → ψσu

a′
(h(Uσu

a
)).
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Lemma 8. If ps ∈ Û εa
as then χa([p]

s
x, [p]

s
y, [p]

s
z) > χa([p]

s
x, [p]

s
y, 0) and if ps ∈ Û εa

as then
χa([p]

s
x, [p]

s
y, [p]

s
z) < χa([p]

s
x, [p]

s
y, 0).

Proof. Statement can be proven via considering the expression χa([p]
s
x, [p]

s
y, [p]

s
z) −

χa([p]
s
x, [p]

s
y, 0). Applying the mean value theorem, we obtain

χa([p]
s
x, [p]

s
y, [p]

s
z)− χa([p]

s
x, [p]

s
y, 0) = [p]sz ·

∂χ̂a

∂z
,

where
∂χ̂a

∂z
is a value of partial derivative

∂χa

∂z
at some intermediate point of segment with

([p]sx, [p]
s
y, [p]

s
z) and ([p]sx, [p]

s
y, 0) as an endpointes. Since the sign of

∂χ̂a

∂z
coincides with εa in

neighbourhood Ûas , the sign of χa([p]
s
x, [p]

s
y, [p]

s
z)−χa([p]

s
x, [p]

s
y, 0) is equal to εa ·sgn[p]sz.

4. Necessary conditions for topological conjugacy

Theorem 1. Suppose that f, f ′ ∈ Ψ are topologically conjugated via homeomorphism h
such that h(a) = a′ for point a ∈ A, h(σsa) = σsa′ , h(σua ) = σua′. Then Θa = Θa′.

Proof. We will mark with stroke sign all objects of diffeomorphism f ′ that are images of
corresponding objects of diffeomorphism f under homeomorphism h.

First, we choose linearizing neighbourhood Uσu
a′

as it was described before lemma 8. After
that, we choose the mapping ψσu

a′
such that images of points of W s

σs
a′

under ψσu
a′

has non-
negative z-coordinate in some neighbourhood of tangency point a′u (in the opposite case we
can apply changing of coordinates mirz : (x, y, z) → (x, y,−z) and set ψ̃σu

a′
= mirz ◦ ψσu

a′
).

Thus it is possible to chose sequence {an} befor lemma 4 such that for a′n = h(an) the
following relations hold

χa′([a
′
n]

s
x, [a

′
n]

s
y, [a

′
n]

s
z) > χa′([a

′
n]

s
x, [a

′
n]

s
y, 0) ≥ 0.

As a result of choice we have sequence of points {an}, integer sequences {kn} and {mn},
points b ∈ (W u

σs
a
\ σsa) and c ∈ (W s

σu
a
\ σua ) such that lim

n→∞
kn = +∞, lim

n→∞
mn = +∞ and

sequences {bn = fkn(an)}, {cn = f−mn(an)} tend to points b and c respectively; moreover,

χa′([a
′
n]

s
x, [a

′
n]

s
y, [a

′
n]

s
z) > χa′([a

′
n]

s
x, [a

′
n]

s
y, 0) ≥ 0.

There are two possibilities here:

1) Sequence {a′n} has subsequence {a′nq
} such that exist positive constants C1 and C2

and the inequalities

∣∣∣∣∣ [a′nq
]sx − [a′]sx

[a′nq
]sz

∣∣∣∣∣ < C1 and

∣∣∣∣∣ [a′nq
]sy − [a′]sy

[a′nq
]sz

∣∣∣∣∣ < C2 hold for all elements

of subsequence.

In this case both sequences {anq} and {a′nq
} satisfy conditions of lemma 4. On one

hand, lim
q→∞

mnq

knq

= − lnµa
lnλa

; on the other hand, lim
q→∞

mnq

knq

= − lnµa′

lnλa′
. From that we

obtain that
lnµa
lnλa

=
lnµa′

lnλa′
.
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2) Sequence {a′n} has no subsequence, which satisfies conditions of case 1).

From conditions for linearizing neighbourhoods and sequence {an} follows that

χa′([a
′
n]

s
x, [a

′
n]

s
y, [a

′]sz) > 0.

For images of sequences {an}, {bn} and {cn} following equalities hold:

[a′n]
s
z = µ−kn

a′ · [b′n]sz, [c′n]uz = λ−mn
a′ · [a′n]uz ,

[a′n]
u
z − χa′([a

′
n]

s
x, [a

′
n]

s
y, [a

′]sz) = Bn · µ−kn
a′ · [b′n]sz,

where

Bn =
[a′n]

u
z − χa′([a

′
n]

s
x, [a

′
n]

s
y, [a

′]sz)

[a′n]
s
z

.

Since
χa′([a

′
n]

s
x, [a

′
n]

s
y, [a

′]sz) > 0,

then
[a′n]

u
z − χa′([a

′
n]

s
x, [a

′
n]

s
y, [a

′]sz) < [a′n]
u
z .

From last inequality follows that

Bn · µ−kn
a′ · [b′n]sz < [a′n]

u
z .

Multiplicating by λ−mn
a′ and dividing by Bn · [b′n]sz, we get

λ−mn
a′ µ−kn

a′ <
[c′n]

u
z

Bn · [b′n]sz
.

After taking logarithm and dividing by −kn · lnλa′ we obtain

mn

kn
> − lnµa′

lnλa′
− 1

kn
·
ln

(
[c′n]

u
z

Bn · [b′n]sz

)
lnλa′

.

Obviously, we have lim
n→∞

1

kn
= 0, lim

n→∞
[c′n]

u
z = [c′]uz , lim

n→∞
[b′n]

s
z = [b′]sz and Bn[b

′
n]

s
z > 0.

Also we have that lim
n→∞

Bn =
∂χa′

∂x
(a′s) because

Bn =
χa′([a

′
n]

s
x, [a

′
n]

s
y, [a

′
n]

s
z)− χa′([a

′
n]

s
x, [a

′
n]

s
y, [a

′]sz)

[a′n]
s
z − [a′]sz

=

=

∂χ̂a′

∂z
([a′n]

s
z − [a′]sz) +

∂χ̂a′

∂x
([a′n]

s
x − [a′n]

s
x) +

∂χ̂a′

∂y
([a′n]

s
y − [a′n]

s
y)

[a′n]
s
z − [a′]sz

=
∂χ̂a′

∂z
,

where
∂χ̂a′

∂x
,
∂χ̂a′

∂y
,
∂χ̂a′

∂z
are the values of corresponding partial derivatives at some

intermediate point of segment with a′s and a′sn as an endpointes. From all this we
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conclude that lim
n→∞

mn

kn
≥ − lnµa′

lnλa′
. From lemma 4 follows lim

n→∞

mn

kn
= − lnµa

lnλa
, so

lnµa
lnλa

≤ lnµa′

lnλa′
.

If we begin with diffeomorphism f ′, we can obtain that lim
n→∞

m′
n

k′n
= − lnµa′

lnλa′
and

lim
n→∞

m′
n

k′n
≥ − lnµa

lnλa
. From this follows that

lnµa′

lnλa′
≤ lnµa

lnλa
. Obviously,

lnµa
lnλa

=
lnµa′

lnλa′
.

Let a be an arbitrary point of heteroclinic tangency. Suppose that linearizing
neighbourhoods Uσs

a
and Uσu

a
are such that homeomorphisms ĥs and ĥu can be defined

as in description before lemma 8. Denote by Ĥs and Ĥu restrictions ĥs
∣∣
Oz

and ĥu
∣∣
Oz

. Also,
suppose that neighbourhoods Ûas and Ûa′s = ĥs(Ûas) are defined as before lemma 8, but

with one additional condition: sign of
∂χa′

∂z
in Ûa′s coincides with sign of

∂χa′

∂z
(a′s). This

condition always can be treated by choosing smaller euclidean neighbourhood inside Ûas .

Lemma 9. Let diffeomorphisms f, f ′ ∈ Ψ∗ be conjugated by a homeomorphism h. Let
a ∈ A be an arbitrary point of heteroclinic tangency and h(a) = a′. Then induced conjugating
homeomorphisms Ĥs and Ĥu have following coordinate expression

Ĥs(z) =

{
α+
s · zρ, z > 0

α−
s · (−z)ρ, z < 0

and Ĥu(z) =

{
α+
u · zρ, z > 0

α−
u · (−z)ρ, z < 0

, where ρ =
lnµa′

lnµa
=

lnλa′

lnλa
.

Proof. Take any tangency point a ∈ A and corresponding saddle fixed points σsa and σua .
Homeomorphism h maps point a to point a′; also, h maps saddle fixed points σsa and σua
to σsa′ and σua′ respectively.

Using approach that we’ve mentioned in proof of theorem 1, we modify mappings ψσu
a′

,
ψσu

a
, ψσs

a
и ψσs

a′
. Choose ψσu

a′
and ψσu

a
such that images of points of invariant manifolds

W s
σs
a′

и W s
σs
a

under ψσu
a′

and ψσu
a

have non-negative z-coordinate in some neighbourhoods
of tangency points a′u and au respectively. Also, choose ψσs

a
such that for all points

ps ∈ Û+
σs
a

holds χa(p
s) > χa([p]

s
x, [p]

s
y, 0) ≥ 0. Similarly choose ψσs

a′
such that for all points

p′s ∈ Û+
σs
a′

holds χa(p
′s) > χa([p

′]sx, [p
′]sy, 0) ≥ 0. Note that as a consequence of this choice of

neighbourhoods and mappings we have that partial derivatives
∂χa

∂z
(as) and

∂χa′

∂z
(a′s) are

positive; also, for homeomorphisms Ĥs and Ĥu following holds:

Ĥs : OZ
+ ⊂ UJσs

a
→ OZ+ ⊂ UJσs

a′
, Ĥs : OZ

− ⊂ UJσs
a
→ OZ− ⊂ UJσs

a′
,

Ĥu : OZ
+ ⊂ UJσu

a
→ OZ+ ⊂ UJσu

a′
, Ĥu : OZ

− ⊂ UJσu
a
→ OZ− ⊂ UJσu

a′
;

in other words, this means that α+
s , α

+
u > 0 and α−

s , α
−
u < 0.

Applying lemma 5, we obtain that for any point c ∈ ℓs+σu
a

exist sequence {an} → a,
{an} ⊂ (Ua \ (W s

σs
a
∪W u

σu
a
)) and integer sequences {kn} → +∞, {mn} → +∞ such that

lim
n→∞

bn = lim
n→∞

fkn(an) = b (moreover, b ∈ ℓu+σs
a
) and lim

n→∞
cn = lim

n→∞
f−mn(an) = c. By
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construction, we get that [bn]
s
z = µkna

1

βn
λmn
a [c]uz , where βn =

[an]
u
z

[an]sz
; then, µkna λmn

a =
[bn]

s
zβn

[c]uz
.

From lim
n→∞

[bn]
s
z = [b]sz and lim

n→∞
βn = βa, follows lim

n→∞
µkna λmn

a =
[b]szβa
[c]uz

.

We will mark with stroke sign all objects of diffeomorphism f ′ that are images of
corresponding objects of diffeomorphism f under conjugating homeomorphism h. For

diffeomorphism f ′ we have similar formulas µkna′ λ
mn
a′ =

[b′n]
s
zβ

′
n

[c′]uz
, где β′n =

[a′n]
u
z

[a′n]
s
z

. According

to theorem 1 Θa = Θa′ , i.e.
lnµa
lnλa

=
lnµa′

lnλa′
. Put by definition ρ =

lnµa′

lnµa
=

lnλa′

lnλa
. Obviously,

µkna′ λ
mn
a′ = (µkna λmn

a )ρ and lim
n→∞

µkna′ λ
mn
a′ =

(
[b]szβa
[c]uz

)ρ

. Now we obtain

(
[bn]

s
zβn

[cn]uz

)ρ

= (µkna λmn
a )ρ = µkna′ λ

mn
a′ =

[b′n]
s
zβ

′
n

[c′n]
u
z

=
[b′n]

s
z[a

′
n]

u
z

[c′n]
u
z [a

′
n]

s
z

and
[b′n]

s
z[a

′
n]

u
z

[c′n]
u
z [a

′
n]

s
z

≥
[b′n]

s
z

(
[a′n]

u
z − χa′

(
[a′n]

s
x, [a

′
n]

s
y, 0
))

[c′n]
u
z [a

′
n]

s
z

.

Applying similar reasoning as in proof of lemma 4, we conclude that

[a′n]
u
z − χa′([a

′
n]

s
x, [a

′
n]

s
y, 0)

[a′n]
s
z

tends to βa′ as n→ ∞. Passing to the limit, we get(
[b]szβa
[c]uz

)ρ

≥ [b′]szβa′

[c′]uz
.

If we start from diffeomorphism f ′ and apply similar considerations, we’ll get that

(
[b′]szβa′

[c′]uz

)1

ρ ≥ [b]szβa
[c]uz

.

Hence, (
[b]szβa
[c]uz

)ρ

=
[b′]szβa′

[c′]uz
;

in other words,
|βa|ρ

|βa′ |
=

|[b′]sz| · |[c]uz |
ρ

|[c′]uz | · |[b]sz|
ρ .

Let’s interpret last formula. If we fix point c and vary point b arbitrarily, then it follows

that
|[b′]sz|
|[b]sz|ρ

= const; similarly, if we fix point b and vary point c, we get
|[c]uz |ρ

|[c′]uz |
= const.

From this follows that [b′]sz = α+
s ([b]sz)

ρ and [c′]uz = α+
u ([c]uz )

ρ; these formulas define
homeomorphisms Ĥ+

s : OZ+ → OZ+ and Ĥ+
u : OZ+ → OZ+. If we take point c ∈ ℓs−σu

a
, we

can prove similar formula for homeomorphisms Ĥ−
s : OZ− → OZ− and Ĥ−

u : OZ− → OZ−,
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namely [b′]sz = α+
s (−[b]sz)

ρ and [c′]uz = α+
u (−[c]uz )

ρ respectively. In terms of induced
homeomorphisms we can write formula as

|βa|ρ

|βa′ |
=

|α+
s |

|α+
u |

=
|α−

s |
|α−

u |
.

Note that proof for this lemma was given in particular case of mappings ψσu
a′

, ψσu
a
,

ψσs
a

and ψσs
a′

. However, all modifications that we’ve applied are just compositions of mirror
symmetries mirz with original mappings. We can revert these modifications, substitute current
coordinates with “old” coordinates and obtain similar formulas for Ĥs and Ĥu for all cases.

Recall that in theorem 2 we consider tangency points a, d ∈ A such that σsd = σsa,
σud = σua and signs of parameters βd, βa coincide.

Theorem 2. Suppose that f, f ′ ∈ Ψ∗ are topologically conjugated via homeomorphism h
such that h(a) = a′, h(d) = d′ for points a, d ∈ A such that βa · βd > 0, h(σsa) = σsa′ and
h(σua ) = σua′. Then τad = τa

′
d′ .

Proof. Take any of points a or d (for example, a) and choose linearizing neighbourhoods
similarly as in proof of lemma 9. From lemma 7 follows that coincidence of signs of parameters
βd and βa doesn’t depend on choice of linearizing neighbourhoods. It’s not hard to show that
procedure of choice from lemma 9 entails that signs of βd′ and βa′ coincide too. But this

leads to
|βa|ρ

|βa′ |
=

|α+
s |

|α+
u |

and
|βd|ρ

|βd′ |
=

|α+
s |

|α+
u |

. From this follows that
|βa|ρ

|βa′ |
=

|βd|ρ

|βd′ |
; then,

∣∣∣∣βaβd
∣∣∣∣

1

lnµa =

∣∣∣∣βa′βd′

∣∣∣∣
1

lnµa′ , i.e. coincidence of parameters τad = τa
′

d′ .
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Publications Mathématiques de l’Institut des Hautes Études Scientifiques 57 (1) (1983) 5–71.

13. J . Palis, A differentiable invariant of topological conjugacies and moduli of stability, Asterisque
51 (1) (1978) 335–346.

14. I .G. Petrovskii, Lekcii po teorii obyknovennyh differencial’nyh uravnenii (Lectures on the theory
of ordinary differential equations), Moscow: Izdat. Moskovskogo Univ., 1984.

15. L.P. Shilnikov, A.L. Shilnikov, D.V. Turaev, L.O. Chua, Methods of qualitative theory in nonlinear
dynamics. Part I. World Scientific Series on Nonlinear Science. Series A: Monographs and
Treatises, 4. World Scientific Publishing Co., Inc., River Edge, NJ (1998).

Получена 02.10.2013

ISSN 0203–3755 Динамические системы, том 3(31), No.3-4


