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Abstracts. In present paper we consider a class of 3-dimensional diffeomorphisms with finite hyperbolic chain
recurrent set and finite number of orbits of heteroclinic tangencies. We prove that necessary conditions for
topological conjugacy of two diffeomorphisms from this class is a generalization of moduli of stability for
analogous two-dimensional systems.

Keywords: topological conjugacy, heteroclinic tangencies, moduli of stability.
Introduction

According to S. Newhouse and J. Palis [11], there is an open set of arcs that start in Morse-
Smale diffeomorphism and have first bifurcation point at diffeomorphism with heteroclinic
tangency. In survey |[1] bifurcations of systems from boundary of set of Morse-Smale
type diffeomorphisms are described; this boundary includes systems with non-transversal
intersections of invariant manifolds. Obviously, heteroclinic tangency of invariant manifolds is
not structurally stable situation. Moreover, in such situation continuous topological invariants
(moduli of stability) appear.

J. Palis was one of the first who noticed existence of moduli of stability [13]. He discovered
that even two-dimensional diffeomorphisms with heteroclinic one-sided tangency already have
moduli. Further advance in this direction was done by W.de Melo and S.J.van Strien
in [8] where they found necessary and sufficient conditions for diffeomorphism of orientable
surface to have finite moduli of topological stability; these moduli fully describe all classes of
topological conjugacy in some neighbourhood of such diffeomorphisms.

T.M. Mitryakova and O.V. Pochinka obtained a topological classification for a class of
orientable surface diffeomorphisms with finite numbers of moduli of stability [9]. Radical
difference between result of this paper and paper [8] is that the classification was done not
only for “near” systems from some neighbourhood, but for “far” systems too.

There are only few results known in case of higher dimensions. In S.Newhouse, J.Palice
and F.Takens’ paper [12] has been proven a necessary condition for topological conjugacy
of two diffeomorphisms with one orbit of one-sided heteroclinic tangency. In J.Palis and W.
de Melo’s paper [6] n-dimensional manifolds’ diffeomorphisms with one orbit of one-sided
heteroclinic tangency are considered and classification of diffeomorhphisms in neighbourhood
is presented.

!This paper was supported by the Russian Foundation for Basic Research (project nos. 12-01-00672-a,
13-01-12452-ofi-m and by The Ministry of education and science of Russia 2012-2014 (grant 1.1907.2011).
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186 E. A GRINES, O.V.POCHINKA

In present paper we study necessary conditions for topological conjugacy of 3-manifolds’
diffeomorphisms with few orbits of one-sided heteroclinic tangency.

1. Formulation of results

In present paper we consider a class of diffeomorphisms ¥ C Diff4(M 3). We say that
orientation preserving diffeomorphism of smooth manifold M? is from class W if it satisfies
following conditions:

1) chain reccurrent set Ry is finite and consists of hyperbolic fixed points. Eigenvalues of
Df at fixed points are positive and have no resonances? until third order;

2) wandering set of diffcomorphism f contains finite number of heteroclinic tangency
orbits.

Let p, g be different hyperbolic saddle points of diffeomorphism f such that intersection
W, NW;" is non-empty. Any point = € W, NW' is called a point of heteroclinic intersection.
Further characterizing of point x is based on whether intersection is transversal or non-
transversal. Two smooth submanifolds N; and Ny ( Ny, No C M 3) are intersected
transversally at point © € (N1 N Na) if T, N1+ T, Ny = T,M3. Let z be an isolated tangency
point of two-dimensional manifolds N; and Ns, Ni,No C M?3; then z is a one-sided
tangency point if there exists neighbourhood V, of point z such that Ny intersects not more
than one connected component of V, \ Nj. For example, any isolated point of tangency of
two-dimensional invariant manifolds of 3-dimensional diffeomorphism f is one-sided tangency
point.

Let o be a saddle fixed point of diffeomorphism f € WU. Denote by J, : R? — R3 a
linear diffeomorphism defined by Jordan normal form of linearization Df in neighbourhood
of o. The origin 0(0,0,0) is a saddle point of J,. In section 2 we construct examples of
Jy-invariant neighbourhood of point O for each type of Jordan form.

Definition 1. We say that f-invariant neighbourhood U, of saddle fixed point o is C*-

linearizing if there exists C'-diffeomorphism 1, : U, — U, that conjugates f‘U with Ja‘
o Jo

The following lemma is proven in section 2

Lemma 1. For any saddle fired point o of diffeomorphism f € WU exists linearizing
neighbourhood.

We say that point a is in A if it is a point of heteroclinic tangency of two-dimensional
invariant manifolds. For any point a € A we define saddle points ¢ and o% such that
a € Wgs N W5 Obviously saddle point o7 has one-dimensional unstable manifold and o7
has one-dimensional stable manifold. Denote by u, and A, eigenvalue that corresponds to
one-dimensional eigenspace for J,s and for Jyu respectively.

2Recall that the set of eigenvalues (p1,p2,...,pn) of operator A is called resonant if exist non-negative

integers i € {1,...,n}, m; (j=1,...,n), |m| =3 m; >2such that p; = p"* - p52 ... pp'™. The number
j=1

|m| is called an order of the resonance.
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NECESSARY CONDITIONS OF TOPOLOGICAL CONJUGACY 187

In g

N Aq
has been proven in article [12] in general setting for manifolds of dimension greater or equal
than 2. For sake of completeness we prove it in our case.

For any point a we define parameter O, and put it equal to . The following theorem

Theorem 1. Suppose that f, f' € ¥ are topologically conjugated via homeomorphism h such
that h(a) = d’ for point a € A, h(c)) =03, h(o})=0". Then ©4 = Oy .

a’’ a

Recall that Ugs = @D;gl(U 7,s) and Uyu = w;gl(U J,.) are linearizing neighbourhoods.
Denote by U, the connected component of Uss N Uy that contains point a. For any point
p € U, put by definition

P = Yoz (p) = (Ip13, [Pl [PI2),
P* = You(p) = ([Plz, [Ply, [P12);

9o =ty 0 (Vo ) 5 0o (Ua) = oy (V).

Coordinate expression of map g, is

ga(ZE? Y, Z) = (ga(l‘, Y, Z)v 77a(33, Y, Z)7 Xa(l'a Y, Z))

Now consider a subclass W* C ¥ with diffeomorphisms such that ©, is irrational for any
point a € A. Let a and d be points from A such that o) =0, of = o, and derivatives

Be = OXa (a®) and By = %(ds) have same sign. By definition, put 7§ = |Ba/5d|1/ln““. The
z z

main result of present paper is the following theorem:

Theorem 2. Suppose that f, ' € U* are topologically conjugated via homeomorphism h
such that h(a) = o', h(d) = d for points a,d € A such that B = fq >0, h(o]) = o2,
and h(o¥) = o%. Then 7§ =15 .

2. Linearizing neighborhood

Recall that by J, : R? — R? we denote linear diffeomorphism defined by Jordan normal
form of linearization D f at saddle point o. Suppose o has two-dimensional stable manifold;
then there are three possibilities for diffeomorphism J, : R? — R? and J,-invariant
neighbourhood Uy, of origin:

1. Jo(z,y,2) = (Mx, A2y, uz), where 0 < A, A2 < 1and p > 1;
2 2
s = {02 € B (a0 ) s (ylefo80) <1
2. Jy(x,y,2) = (A + 1y, \y, uz), where 0 <A< 1land p>1;

2
Us, = {(:C,%z) € R3 : [z 7218 <y2 - ﬁ-lnlz! +9C> < 1}U{Z =0}.

3. Jo(z,y,2) = (p-(x-cosp —y-sing),p- (z-sinp+y-cosp),uz), where 0 < p<1and
p> 1
Us, = {(0.9.2) €B3: (a2 +42) o507 < 1),

o
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Oz

Oz

Puc. 1. Linearizing neighborhood Uy, for J,(z,y,z) = (Aiz, A2y, p1z)

Similar formulas can be written in case when saddle fixed point ¢ has two-dimensional
unstable manifolds.

Lemma 2. Any saddle fixed point o of diffeomorphism f € WU has linearizing neigbourhood.

Proof. According to Belitskii’ theorem (see [2], chapter 6, §5 or [15], theorem 3.20), since
fe Diff4(M 3) and has no resonances until third order, in neighbourhood of ¢ diffeomorphism
f is conjugated with its differential via C! coordinate transformation. In other words, for map
f € W exist neighbourhood V;, of saddle point o, neighbourhood Vp of origin O(0,0,0), and
C*'-diffeomorphism ), : V, — Vo which conjugates f|y, with Df,|v,. Put by definition

Vo, = U f*(Vy) and Vo = | Df?(Vp). Since W? and WY are submanifolds of M3
neZ nez B
(this can be done like in [10], theorem 1), diffeomorphism ), extends to a diffeomorphism

Yo : Vo — Vo3 we put by definition 1ty (z) = Df;™(1he(f™(x))) where m is an integer
number such that f™(z) € V. Diffeomorphism D fo|y,  is conjugated with its Jordan form
J by linear coordinate transformation S :R? — R3.

For any k € N put by definition

Ui = {(m,y,z) e R®: (Vkx,Vky,z) € UJU}.

Choose k € N such that Uffg C Vp. Note that J,

is conjugated with J, b
vt jug I v, y

diffeomorphism  h(z,y, z) = (Vkx,Vky, z). It now follows that U, = 1,/;;1 o Sil(Uf,“o) is a
required linearizing neighbourhood with conjugacy

Yo =hoSothy: Uy = Uy,.

3. Auxiliary statements
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NECESSARY CONDITIONS OF TOPOLOGICAL CONJUGACY 189

Lemma 3. For the map gq(x,y,2) = (&a(z,y,2),Ma(2,y, 2), Xa(x,y, 2)) the following

. . aXa S\ __ aXa S\ __ axa S
relations holds: o (a®) =0, ay (a®) =0, 9, (a®) # 0.

Proof. There is a following correspondence between W3, Wi and their images in linearizing
neighbourhoods Uj ., Uy ,:

e plane Oxy e U, s corresponds to Wz,

e surface Vg; (Wgu) in Uy, corresponds to Wgh;

e plane Ozy € Uy, corresponds to W;

o surface Yyu(Wys)in Uy, corresponds to Ws.
a a a

Let a be the tangency point of W3 and . Since 1ys and 1)gu are diffeomorphisms,
points tgs(a) and ,u(a) will be heteroclinic tangency points of images of Wg, and W
in neighbourhoods Uy, and Uy, (see [7]).

Now consider two smooth curves on plane Oxy C U, s that pass through point a®. Let the
tangent vectors to these curves at point a® be equal to (1 0,0) and (0,1, 0) respectively. Map
ga(,y, 2) sends these curves to curves on surface ,u(W;s ) cUy, u Tangent vectors to curve
images at point a" must have zero z-coordinate because curves touch plane Ozy C Uy, u at
point a". Suppose that curves were parameterized by a parameter t; then by chain rule we
obtain

0 08 0%
/ Jor Oy 0z /
SN | e o oma | [
777; N or Oy 0Oz y,; ’
Xt OXa OXa OXa “t
or 0Oy 0z

where the matrix of partial derivatives is a Jacobi matrix for map g¢,(z,y,z). Substituting
tangent vector in right hand side for (1,0,0) and (0,1,0), we obtain that tangent vectors
% Mg 8Xa) an (85(1 Oa OXa
dr’ Oz’ Ox

to curve images are equal to ( ) respectively. Since curve

Dy’ dy’ By
. IXa N IXa .
images touch plane Oxy C U; , we get that =0 and Sy 0. However, g,(x,y, 2)
a 1‘ y
0
is a diffeomorphism and det Dg,(a®) # 0, so we necessarily have that aXa #0. O
z

In further theorems and lemmas we will often refer to the following sentence:

Proposition 1. Let o be a saddle fixed point and J, be one of the Jordan forms mentioned
earlier. Then for any sequence {r,}, r, € Uy, \ Oz that tends to r € (Oz \ O) exist
subsequence {ry,}, sequence {k;}, k;j — +o0 and point ¢ € Oxzy\{O} such that {f*(r,,)}
tends to point ¢ (the proof is analogous to the proof of lemma 2.1.1 in [3]).

Let {a,} C (Ua\ Wyiu) be the sequence of points such that {a,} tendsto a € Wg. N
s~ ol _ ,,

as n — +oo and there exist positive constants C; and (5 such that al
a3
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Puc. 2. Ilustration for lemma 4

[av]y — laly
[ay]2

{av} C Ua \ (W5 UW. ). From proposition 1 it follows that there exist subsequence {ay,},

sequences {kp} and {m,}, point b € (Wi \ o7) and point ¢ € (Wju \ oy) such that

lim k, = +oo0, lim m, = 4o, {b, = f*(ay,)} and {c, = f™(a,,)} tend to b and c

respectively (see fig. 2). For the sake of briefness we denote by {a,} a sequence {a,,}.

and < Csy. Note that these inequalities disallow to take points from W/, i.e.

. Mp _hl Ha
Lemma 4. nlggo E = Thoa

Proof. Since ¢, = f~™(a,) and a, = f~*(b,), it follows that

el = 20 - [an]?,  [bal = 1" - [an]2-
u u u
Consider ratio (CnlE _ =k . [2n]> . Term [an]z can be expressed as

[bn]5 o ¢ [an]s [an]$

[an)s _ Xa(lan]3, [anly, [anl?) _ Xa(lanls, lan]y, [an]2) — Xa([alz, [aly, [a]2)

[an]s [an]s B [an]s — [a]s

Applying mean value theorem, we obtain

Xa([anl3, [an]y; [an]?) — Xa(lalz, [aly, [a]2)

[an] — [a]2
8>A<a S S 82‘1 s S a)A(a S S
| el = ) + G ol ) + el ~ )
[an] — [al2
_ OXa | OXa _ lan]; —[a]; | OXa ) [an]z — [al3
“ oz T or lai—la: T Oy lan:—lal’
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NECESSARY CONDITIONS OF TOPOLOGICAL CONJUGACY 191

IXa OXa OXa
ox’ Oy’ 0z
point of segment with a and a, as an end points. Clearly, the limit of this expression is
[an]; — [al;

[an]$

where are the values of corresponding partial derivatives at the intermediate

Xa

0z
[an]y — laly

[an)$

equal to and

(a®) as n tends to infinity; it can be easily shown since ‘

OXa OXa
ox ' Oy

are bounded and

[cn]?
[bn]s’

mp In Ha 1 [an]u [Cn]u
- = . 1 z - 1 R .
o Tdnhg B Inhg ( Hans T ol

are continuous at point a® and are equal to zero.

Taking logarithm of dividing by —k, - In A\, and rearranging terms, we obtain

Expression in right hand side tends to In %Xa( %) —1 [[az as n — 400, S0
< z
. My In pq
lim —* —
oo by Ing

O]

The proof of lemma 5 uses ideas from articles [5] (proof of lemma 2.3) and [9].

By fg; ({5s ) and Ei:ur ((5u) denote separatrices of invariant manifolds Wy and Wju
such that wog(ﬁg;) =0Z"={2€0Z:2>0} ( Yos(ly:) =0Z" ={2 € 0Z:2<0})
and Gy (655) = OZ* ( s (£55) = OZ7).

Lemma 5. Let a € A be the point of heteroclinic tangency. Suppose that ©, is irrational
number. Then for any point b € ﬁ“ exists €4 € {+, —} such that for any point c € 555“ exist

sequence {an} — a and sequences {my} — +00, {kn} — +o0o such that lim f*(a,) = b,

n—oo
lim f~"(a,) = c.
n—oo

OXa
0z (
being definite, take ¢, = 4+ and ¢ € ﬁffz; Consider a sequence of points {a,,} such that

]z = lalz, [amly = laly, lam]z = Ag'lel:-

u
z

— if OXa (a®) < 0 For the sake of
z

Proof. Put e, = + if a®) > 0 and put it equal to

Since ¢ € Ei:{ then inequality [ay,]¥ > 0 holds for any point of sequence {a;,}. Put by

definition 3, = [[Oémk . From [am[]z_]s[a]x = 0 and [Oém[]y—]s[a]y = 0 it follows that
am)$ am)$ am)$
lim G, = Na (a®) = Bq (see lemma 4). Put be definition
m—00 0z
1 Ba )
In ( —[amls — ey In ( [c]¥=—A' 5
_ Infan) (5! 0_»(% ”)_ (e 52 )
" Inpg In 44 In 4 In g4 ’

then rearranging of terms gives

1 B
In <[c]7z‘> In ==
_ Ba . Bm +mln)\a

In g In fiq In uq
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In ([C]gﬁ> In & In )\
Put by definition § = ——"%% and (, = ﬂ; then s, = 0 + (n + m———. Note
In pq In pg In pq
In g
that A _ 0, <0, 6 =const, lim (, = 0 and lim s, = —oo. Consider the
In )\a m—»o0 m—o0

1

mapping y : R — R where y =z + w, and w, = —. This map induces a diffeomorphism
. a

7 : St — S! via covering map p(z) = €?™®. By construction ¢ is a rotation by angle 27w,

where w, < 0 and {0+ mw,} = |J y™(0). Since ©, is irrational then w, is irrational
meN
too and p( |J y™(#)) is dense on circle (see [4], proposition 1.3.3). Then sequence p(sy,)
meN

is also dense in circle because lim (, = 0. For any m number s, can be expressed as
m—00

Sm = &n + Sm where &, is an integer part of s, and §,, € [0,1). From lim s, = —00
m—ro0

follows that lim &, = —oo. Since {3,,} is dense in [0,1), set {usm} is dense in [1; ).
m—0o0
Let ¢ be the integer number such that pd < [0S < pd™: then pd™™ is dense in [pd, pd™).

Hence, for any point b € %3, b= (0,0, [b]?) exists subsequence {3, } such that [b]5 = 5™

o5
where § = lim §,,,,. It now follows that
n—oo

S 3 gmn — 3 Smp ,, " Smn — : —Smp pSMmn, Inpe
b1 = pd lim pgmn = pd lim pgmn g = pd lim gy Smn efmn M be —
n—oo n—oo n—oo

In[a,,, ]

S
— q 3 7§mn z —_— q 1 7£mn S
Hq nlgrolo Ha exp < In La In /’La> Ha nlglolo Hq [amn]z'
Put by definition —&,,, +q = kn, {an} = {am,}, bn = f¥(ay,), ¢ = f~™(ay,). Obviously
{a,} is a required sequence. O

Lemma 6. Let L:R3 — R3 be the linear diffeomorphism such that L(Oz) = Oz
and L(Oxzy) = Ozy. Suppose that Lo, acts like a homothety with coefficient p >
1 and for any point P € Owxy iterations L™(P) tend to O as n — +oo. Let
¢ = (O1(z,y, 2), Pa(x,y, 2), Ps(x,y, 2)) be a diffeomorphism that commutes with L; also,

®(Oxy) = Oxy. Then the derivative 8—3 is constant at plane Ozy and is non-zero.
z
Proof. Since plane Oxy is invariant under map @ then it is true that ®3(z,y,0) = 0 According

to Hadamard’s lemma (see formulation and proof in [14] ), function ®3 can be expressed as
03

62 ‘(x’yzo)
maps L and ® commute then for any n € Z maps L™ and ® commute too. Now consider the

sequence of points {(Zn,Yn, Zn) tnen such that x, = z*, y, = y*, 2z, = p~ 2" where z* and
y* are the coordinates of arbitrary point from plane Ozy. Apply equality ®o L™ = L" o ®
to (@n,Yn, 2n) and calculate the z-coordinate of result. After that we obtain equality

z-g(x,y,z) where g(z,y,z) is continuous function such that g¢(z,y,0) = . Since

ann : g(Ln’Oxy(«Tm yn)a Unzn) = ann : g(xnv Yn, Zn)a

which also can be written as
g(Ln’Oa:y(xrn yn)a ,unzn) = g(xn7 Yn, Zn)'
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NECESSARY CONDITIONS OF TOPOLOGICAL CONJUGACY 193

Passing to the limit, we obtain that ¢(0,0,0) = g(z*,y*,0), i.e. for any z* and y*

5(1)3 . (1)3 . 3 _ aq)?) _
|(:1: o) = W‘(&Oyﬂ)' From ®3(x,y,0) = 0 follows that E‘(Iryvo) = Ty‘(mjm =
0P
and a—;! (0.00) # 0 because diffeomorphism ®. has non-zero determinant of Jacobi
matrix. O

Lemma 7. For any points d,a € A such that o), = o), and of = o, parameter 7§ doesn’t
depend on choice of linearizing neighbourhoods of saddle point o and of.

1/Inpa

Proof. Recall that 7§ = ‘5& , where f, = aaXa (a®) and By = %Xd (d?) for points
z
a, d € A. It’s sufficient to prove that ratio == doesn’t depend on choice of diffeomorphisms

Ba
wo'g : Ua’é — UJafL and lbo—g : Ua—g — UJ{;}{'

Recall that for point a € A mapping gq(z,y, z) was defined earlier as

Ja = 1/}0}; © (wag‘Ua) 1/}05( ) — %u( a)

where U, is a connected component of Uys N Uyu, which contains point a . Suppose that
we’ve chosen another linearizing neighbourhoods Uss, Usu and diffeomorphisms

@bai : Ugg — UJag’ Q,bgg : Ugg — UJU};

that don’t coincide with s and s« respectively. By U, denote the connected component
of UosﬂU(,u which contains point a. By definition, put g, = wguo(ngsyUa) L. the coordinate
expression for g, will be

Ga(,y,2) = (La(, Y, 2), fla(@, Y, 2), Xa (2, Y, 2)).-
Then
ga = 7/’0}; o ¢g_gl © wag © 1/1;31 B ¢U§ © 1/1531-

Put by definition ¥* = &03 o w;{; and ¥% = 1;0}; o w;}{l; after that we obtain g, = ¥%o0g,0
(U#)~L. By construction, diffeomorphisms ¥* and ¥“ commute with linear diffeomorphisms
Jos and  Jyu respectively. Put by definition

Uz, y, 2) = (V(2,9,2), ¥5(x,y, 2), V3(z,y,2))
and
Uz, y,2) = (Vi (z,y,2), ¥y (z,y, 2), U5(z,y, 2)).

From ¥*(Ozy) = ¥*(Ozy) = Ouzy it follows that ¥5(z,y,0) = UY(x,y,0) = 0; obviously
ovs ov3 oy ovy

o 3(x,y,0) = " 3(x,9,0) = 0 and o 3 (x,y,0) = 9y 3 (2,9,0) = 0. Note that from
Ga = ¥¥ 0 g, 0 (U%)~! follows that
Dga =Dy - Dga -D(w*) ! :
([al3[al5,0) ([a]g,[al};,0) ([a]3[al5,0) ([al3[al5,0)
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194 E. A GRINES, O.V.POCHINKA

where Jacobi matrices are taken at point a € A. According to lemmas 3 and 6, Jacobi
matrices have following form:

* * x % *
Dga — * k , \Ilu — % * :
([a]3[al,0) OXa , s ([a2],[a%],0) ovy .,

00 o (a®) 00 5 (a")
k k k
D(\Ifs)il _ * ok 8‘113 * ’

as],[as],0 —1,.4

where star signs denote coefficients that are irrelevant to the proof. Multiplying Jacobi
matrices, we get equality

X
(@) a)z,0) 9%

OXa
0z

_owy
0z

(5)
([al3,[a13.0) (gl \ 9%
which can be combined with lemma 6 and rewritten as

_owy (awi)*
(@0 9% (s fa)s0) \ 0%

The same formula holds for point d € A. This means that

(lal3,[a]3,0)

NXp
0z

X
(0,0,0) 0z

(0,0,0) ‘

g, .o, OUY OXa, 4 00 Xa, .
b At@)  SE0,0,05%@) 520,000 SE@) g
Sa Paggy - Whi0,0,0 29 2 0,0.0) Py P

0z 0z 0z 0z 0z

O

Suppose that Ugs is some euclidean neighbourhood of tangency point a* € Uy .,

. o 0 .
U, = 7 (Ugs) C U,. Suppose that partial derivative % doesn’t change sign in Uys (the

ord
existence of such IAleighbourhood follows from continuity (Z)f partial deri\iative). Also suppose
that gz (W N U,) intersects exactly one connected component of Ugs \ oz (W3s N Us)
(this is possible because of one:sidedness of tangency). By U;S and Ua_s denote sets
{p € Ugs: [p] > 0} and {p € U,s: [p]; < O} respectively. Also denote by &, the sign of
partial derivative %(as); sign that is opposite to &, we will denote by &,. Let a and o
be the points of heteroclinic tangency, h(a) = a’. Suppose that for neighbourhood Uss holds
h(Uss) C UJZ,. It’s always possible to choose such linearizing neighbourhood. Suppose that
h(Uss) € Ups,; then there exists k € N such that h(Uffg) C Uqs,, where U(]f(sl = wggl(Uﬁos)
(this observation is similar to the proof of lemma 2). So, linearizing neighbourhood U(’fg satisﬁ?es
this condition. Then we can define the homeomorphism f,: VYos (Ugs) — Q,Z)gcsl/(h(Ugg)) by
formula hy = 1/1‘,;/ hw;gl. Point a’® is an image of point «® under the mapping ﬁs; put by
definition Uys = ﬁs(Uas). For neighbourhood Uys we define sets U;Cs and U(;,s in similar
manner as for Ugs. Note that analogous constructions can be made to define a homeomorphism

ilu: ¢ag(Uag) — 1/}02,(}7’([]03))'
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Lemma 8. If p* € U then Xa([pl3, P15, [PI3) > Xa([Pl3 [P]5,0) and if p* € U then
Xa([Pl3, [P]5, [P)2) < Xa([pl3: [P]5, 0).

Proof. Statement can be proven via considering the expression  xa([pl3,[pl;, [P]3) —
S

Xa([P]3, [P]y> 0). Applying the mean value theorem, we obtain

Xa([Pl3, [Py [P12) — xa([P]3, [P];, 0) = [p; - 852;7

~

0 0
where Xa is a value of partial derivative Xa at some intermediate point of segment with

0z 0z .
([p]3, [ply [P]2) and ([p3, [p];, 0) as an endpointes. Since the sign of % coincides with ¢, in
z

X Y

neighbourhood Uls, the sign of Xa([Pl3, [P5), [P12) — Xa([P]3, [P]5 0) is equal to eq-sgn[p];. O

4. Necessary conditions for topological conjugacy

Theorem 1. Suppose that f, f' € U are topologically conjugated via homeomorphism h
such that h(a) = d’ for point a € A, h(c3) =03, h(o})=0Y,. Then Of = Oy.
Proof. We will mark with stroke sign all objects of diffeomorphism f’ that are images of
corresponding objects of diffeomorphism f under homeomorphism h.

First, we choose linearizing neighbourhood Ujsv as it was described before lemma 8. After
that, we choose the mapping 1/103/ such that imagaes of points of stl under 1/103/ has non-

negative z-coordinate in some neighbourhood of tangency point @' (in the opposite case we
can apply changing of coordinates mir, : (z,y,2) — (z,y, —z) and set 1/303/ = mir, o zpazl).
Thus it is possible to chose sequence {a,} befor lemma 4 such that for a, = h(ay) the
following relations hold

Xa ([an]3: a7y, [an]2) > Xa([an]3, [an]y, 0) > 0.
As a result of choice we have sequence of points {a,}, integer sequences {k,} and {m,},

points b € (WY \ 03) and ¢ € (W2, \ of) such that lim k, = 400, lim m, = 400 and
a a n—oo n—0o0

sequences {b, = f*»(a,)}, {c, = f7™(a,)} tend to points b and c respectively; moreover,

S

X (] [an]3 [an]2) > X ([ar]3, [ar];, 0) > 0.
There are two possibilities here:

1) Sequence {a;} has subsequence {aj, } such that exist positive constants Cy and Cs

[an, )z — @] [an,Jy — 1a'ly
[a7, )2 [0, 12

and the inequalities < Ch and < Cy hold for all elements

of subsequence.

In this case both sequences {an,} and {a;, } satisfy conditions of lemma 4. On one

m 1 m 1 /
hand, lim —¢ = — nﬂa; on the other hand, lim —& = — BHY  Brom that we
q—00 ky, In )\, q—00 ky, In A/
) Inp, Inpy
bt that = .
Ot A N In Ay
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2) Sequence {al} has no subsequence, which satisfies conditions of case 1).

From conditions for linearizing neighbourhoods and sequence {a,} follows that

S

Xa (a3 [an]y, [a']2) > 0.
For images of sequences {a,}, {b,} and {c,} following equalities hold:

—kn —Mn
[an]% = po™ - 02, [enly = A5™ - [aq]z,

s

[a/n]g - Xa’([a/n]azv [a/n]gs/ﬂ [al]i) = By, - /‘;/kn ’ [b;]i,
Where / /s /s s
B — [an]z - Xa'([an]:m [an]y7 [a ]z)
" [ar, )2
Since
Xa ([ap]z, [an], [@]2) > 0,
then

[an)? = Xa (lan]3; [an]y, [0]2) < [an]:-
From last inequality follows that
By - g - [0,)2 < [al, ).
Multiplicating by A" and dividing by B, - [b;,]3, we get
[cn]%

A g < A
S AN AT

After taking logarithm and dividing by —kj, - In A,s we obtain

i (59E)
w o lnpy 1 B, - VL]
M g blz)

kn Ay kn In Ay
1
Obviously, we have lim — =0, lim [,]¥ = []¥, lim [b,]3 = [V']S and B,[b,]5 > 0.
n—oQ n n—oQ n—oo
oo
Also we have that lim B, = Xa (a’®) because
Nn—00 ox

B — Xa' ([an]3: [an]y, [an]2) — Xa ([an]3, [an)y, [@']2)
" [a7,]5 — [a']3 B
af(a/ /18 s af(a/ /18 /18 a)%a/ /1s /1s
2 o)z — [0+ L (als — ) + A (s — [ai;)

z

_ a)Za’
[al,]s — [a]3 0z

af(a’ af(a’ a)%a’
ox’ Oy 0z

intermediate point of segment with «® and a/® as an endpointes. From all this we

where

are the values of corresponding partial derivatives at some
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In p1g 1
conclude that lim Mn > — aal - From lemma 4 follows lim Mo _ _ nﬂa7 o)
n—oo ky, In Ay n—oo ki, In )\,
Inpg  Inpy
< .
InA, — In)Ay
. . . y . . mh In fig/
If we begin with diffeomorphism f’, we can obtain that lim — = — and
n—ro0 kI, In Ay
.oom] In p1q ) Inpgy  Inp, , Inp, Inpgy
lim —* > — . B this foll that < . Ob 1 =
e T TP Ve O WL TS Wik AN S VR P W

O

Let a be an arbitrary point of heteroclinic tangency. Suppose that linearizing
neighbourhoods Uys and Usu are such that homeomorphisms hs and h, can be defined
as in description before lemma 8. Denote by H s and lﬁIu restrictions ﬁs‘ oy and ﬁu‘ O Also,

suppose that neighbourhoods Uys and Uys = iLs(Uas) are defined as before lemma 8, but
aXa’
0z

~ a 12
with one additional condition: sign of in Uys coincides with sign of %(a’s). This
z

condition always can be treated by choosing smaller euclidean neighbourhood inside Ugs.

Lemma 9. Let diffeomorphisms f, f' € ¥* be conjugated by a homeomorphism h. Let
a€Abean arbztmry point of heteroclinic tangency and h(a) = a’. Then induced conjugating
homeomorphisms H, and H, have following coordinate expression

~ - P >0 1 ’ In Ay
and H(2) = {c;i ? 2y z< o herer = 111117; - 11;1; '
. p— R a a

u

ﬁs(z):{aj-zp, z2>0
ag - (—2)P, 2<0
Proof. Take any tangency point a € A and corresponding saddle fixed points o) and o}.
Homeomorphism h maps point a to point a'; also, h maps saddle fixed points of and o}
to o), and o, respectively.

Using approach that we’ve mentioned in proof of theorem 1, we modify mappings wg ,
You, Ygs 1 1/10 Choose wau and 1,u such that images of points of invariant mamfolds
Wgs u Wgs under wau and %ﬁou have non-negative z-coordinate in some neighbourhoods

of tangency points a’“ and a" respectively. Also, choose ,s such that for all points

® e U;% holds  xa4(p®) > Xa([p]3; [Pl5,0) > 0. Similarly choose s, such that for all points
P e U;s/ holds  xa(p") > xa([P']3, [P']5,0) > 0. Note that as a consequence of this choice of

8Xa’
0z

d
neighbourhoods and mappings we have that partial derivatives ﬁ(as ) and (a'®) are

0z

positive; also, for homeomorphisms H, and H, following holds:
H,:02% CU;, 02" CU,., H;:0Z CU;,, —»0Z CU,,.,
H,:0Z"cU;, -0Z"C Uy H,:0Z=cU;, 02" CUyj.;

in other words, this means that af, a;f >0 and o, a, <O0.
Applying lemma 5, we obtain that for any point c¢ € Eau exist sequence {a,} — a,

{an} C (U \ (W, su)) and integer sequences {kn} — 400, {my} — -+oo such that
ILm by, = hm f ( n) = b (moreover, b € 63;) and hﬁm Cn = hﬁm f~™(a,) = c. By
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1 ol
construction, we get that [b,]3 = ukn — A" [c]%, where B, = %a %i :then, pkn \mn = i
n an |7 c|¥

b3 Ba

From lim [b,]2 = [b] and lim B, = S,, follows lim pkn\mn = DR _
oo e o )
We will mark with stroke sign all objects of diffeomorphism f’ that are images of

corresponding objects of diffeomorphism f under conjugating homeomorphism h. For

bl s Rl /I lu
diffeomorphism f’ we have similar formulas uly)\g}" = [ ["C]if", e Bl = %ZT]]z According
| a | a’ .. 1 a’ 1 a’ .
to theorem 1 ©, = O, i.e. Do _ 0P . Put by definition p = Do nA . Obviously,
InA, InAy In pg In )\,
s p
,uﬁ? Al = (pkn Xmn )P and 1i_>m ,ul;?)\y” = <[b[]z]fa> . Now we obtain
n—00 c¥
(bn]2Bn\” _ /& . [br)2Bn _ [bhlilan]?
(i) = ooy = e = B = G
and
rlslan]y Pl ([9n]: = xer (003 a3]5, 0))
[cn]lan]s — [cn]¥lan]3 '

Applying similar reasoning as in proof of lemma 4, we conclude that

[a%]g - Xa’([a;l]iv [a;L]Z7 0)

tends to By as n — oo. Passing to the limit, we get

(B2, WERe

[c] [

If we start from diffeomorphism f’ and apply similar considerations, we’ll get that

(W);l) 28,

(]2 ez

Hence,

(R -

in other words,

Bal® _ |IVTE] - [el2)”

Barl (111 1B
Let’s interpret last formula. If we fix point c¢ and vary point b arbitrarily, then it follows
that ||[[£]/5L = const; similarly, if we fix point b and vary point ¢, we get ||[[CC]/%1[T = const.
From this follows that V5 = af (b)) and [ = af ([c]¥)?; these formulas define

homeomorphisms H; : 0Zt — OZ* and H}: 0Zt — OZ". If we take point ¢ € Lo, We
can prove similar formula for homeomorphisms H s :0Z7 =5 0Z and lﬁIu_ 1027 - 07,
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namely [V]5 = of (—[b]2)” and []Y = af (—=[c]*)” respectively. In terms of induced
homeomorphisms we can write formula as

Bul _ loi| _lazl

| Bar| |041—r | vy |

Note that proof for this lemma was given in particular case of mappings su, VYgu,
Yos and 1gs . However, all modifications that we’ve applied are just compositions of mirror
symmetries ranirz with original mappings. We can revert these modifications, substitute current
coordinates with “old” coordinates and obtain similar formulas for H s and ﬁu for all cases. [

Recall that in theorem 2 we consider tangency points a, d € A such that o) = o},
oy = oy and signs of parameters [y, [, coincide.

Theorem 2. Suppose that f, f' € U* are topologically conjugated via homeomorphism h
such that h(a) =d', h(d) =d for points a,d € A such that B, -4 >0, h(c)) =05 and
h(c¥) = aY. Then 74 =75 .

Proof. Take any of points a or d (for example, a) and choose linearizing neighbourhoods
similarly as in proof of lemma 9. From lemma 7 follows that coincidence of signs of parameters
B4 and B, doesn’t depend on choice of linearizing neighbourhoods. It’s not hard to show that
procedure of choice from lemma 9 entails that signs of [z and B, coincide too. But this

P + P + p p
leads to |Bal = |ai| and |Bal = |aj_ . From this follows that Bl = 1Bl ; then,
|Ba| |?u| Barl  edd| |Ba| |Ba|
& Inpa _ @ In i , i.e. coincidence of parameters 75 = 7'5,/. O
Ba Bar
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