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Abstracts. This paper deals with generalized Euler-Ostrogradsky equations and necessary conditions of
Legendre-type in the case of compact extrema of variational functionals in Sobolev spaces on multi-dimensional
domains. The inverse problem of smoothness refinement for solutions of generalized Euler-Ostrogradsky
equations is considered. It is shown that a certain refinement of smoothness of solutions of generalized Euler-
Ostrogradsky equations is achieved. Some related problems are considered.
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1. Introduction

Starting with the work by L. Tonelli [22] variational problems in Sobolev spaces attracted
much attention by many mathematicians.

In most cases (see, e.g., [7], [9], [11], [12], [13]) the corresponding contributions are
connected with so-called direct methods of the calculus of variation which do not use the
second variation.

At the same time, the various generalizations of the classical approach were considered.
Such way enables to eliminate direct methods (see, e.g., the works by R. Klötzler [14], [15]).

Recently, in our papers [5], [18], [19], [20] a new method of semi-classical type has been
developed in the one-dimensional case. It is based on the concept of so-called compact-ana-
lytic (or, K-analytic) properties of variational functionals as well as on the determination of
compact extrema of variational functionals in Sobolev spaces.

Subsequently, this method has been extended to the multi-variate case ([16], [17]). Here,
following the above mentioned approach fundamental K-extreme necessary conditions for
variational functionals acting in Sobolev spaces on multi-dimensional domains are studied.

In Section 2 necessary definitions and theorems of K-analytical properties of variational
functionals in Sobolev spaces W 1,p, p ∈ N, on a multi-dimensional (Lipschitz) domain D are
given. The main results of the paper are contained in Sections 3–5. In Section 3 a generalized
Euler-Ostrogradsky equation for compact extrema of variational functionals in Sobolev spaces
W 1,p, p ∈ N, is established. Next, in Section 4 the inverse problem of smoothness refinement
for solutions of generalized Euler-Ostrogradsky equations is considered. It is shown that under
some natural conditions a certain refinement of smoothness of K-extremals is achieved.

Finally, in the fifth section a generalized necessary condition of Legendre-type condition
for compact extrema of variational functionals in W 1,p is derived. At first, the concept of a
scalarly non-negative quadratic form is introduced. Then it is proved that the Hessian of the
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integrand in the leading variable is scalarly non-negative almost everywhere at the point of
K–minimum. Moreover, an example is considered as model case.

2. The K-analytical properties of variational functionals in W 1,p(D)
(review)

Let us introduce now general K-analytic properties for a functional acting on an arbitrary
real locally convex space (LCS). In what follows, E is an arbitrary real LCS, Φ : E → R is
a real functional, C(E) is the system of all absolutely convex compacts from E. For any
C ∈ C(E) denote by EC the linear hull of C equipped with the Banach norm ∥ · ∥C generated
by the set C. Recall (see [20]) that an arbitrary real Fréchet space E is topologically isomorphic
to inductive limit of a spectrum {EC}C∈C(E) and the expansion

E
top
= lim−−−−−→

C∈C(E)

EC (2.1)

holds true.

Definition 1. A functional Φ : E → R is called K-continuously (K-differentiable, twice
K-differentiable, etc.) at a point y ∈ E if all restrictions of Φ to (y + EC) are continuously
(Fréchet differentiable, twice Fréchet differentiable, etc.) at y with respect to the norm ∥ · ∥C .
Analogously we say that Φ attains a compact extremum (K-extremum) at y if all restrictions
Φ
∣∣
y+EC

attain a local extremum at y with respect to the corresponding compact norms in
EC .

Remark 1. 1) All K-properties mentioned above are in general weaker than the usual local
ones.

2) Due to expansion (2.1) in case of a Fréchet space E the K-derivatives of any order are
multilinear forms of corresponding order which are continuous in the usual sense.

It is well-known (cf. [7], [9]) that well-posedness of the basic variational functional

Φ(y) =

∫
D
f(x, y,∇y)dx (2.2)

in Sobolev spaces W 1,p(D), p ∈ N, where D is a compact domain in Rn with Lipschitz
boundary, is usually closely connected with an estimate of the integrand f of type

f(x, y, z) ≥ α+ β∥z∥p, (β > 0).

Such severe constraints substantially restrict the class of admissible integrands. In our
paper [16] we have introduced an essentially larger class of the admissible integrands, so called
K-pseudopolynomials, using the concept of dominating mixed smoothness (see, for example
[21], Chapter 2 and the references given there).

Definition 2. A mapping f : Rn
x × Ry × Rn

z → R is called K-pseudopolynomial of the order
p ∈ N if it can be represented in the form

f(x, y, z) =

p∑
k=0

Rk(x, y, z)(z)
k , (2.3)

ISSN 0203–3755 Динамические системы, том 3(31), No.1-2



NECESSARY CONDITIONS FOR K-EXTREMA 71

where the coefficients Rk, taking values in the space of k–linear forms on Rn, are Borel
mappings satisfying dominating mixed boundedness in x, y. More precisely, for any compacts
Cx ⊂ Rn

x and Cy ⊂ Ry the coefficients Rk (k = 0, p) are bounded on Cx × Cy × Rn
z . For the

sake of shortness we shall write f ∈ Kp(z). Here (z)k = (z, . . . , z︸ ︷︷ ︸
k

) is diagonal polyvector in

(Rn)k.

The following theorem shows that the functional (2.2) is well-defined if f ∈ Kp(z).

Theorem 1. If the integrand f of the variational functional (2.2) belongs to the
K-pseudopolynomial class Kp(z) then the functional (2.2) is well-defined on the space
W 1,p(D). Moreover, for any compact set C∆ ⊂W 1,p(D) the estimate |Φ(y)| ≤ αC∆

+ βC∆
·

(∥y∥W 1,p)p holds. Here the coefficients αC∆
≥ 0, βC∆

≥ 0 depend only on the choice of the
compact set C∆.

In order to pass to K-continuity conditions for variational functionals in Sobolev spaces a
suitable subclass of integrands from Kp(z) will be selected.

Definition 3. Let f ∈ Kp(z) be continuous. The mapping f is called a Weierstrass K-pseudo-
polynomial of p-th order (f ∈WKp(z)) if there exists a representation (2.3) such that all
coefficients Rk possess dominating mixed continuity with respect to x, y. More precisely, for
any compact sets Cx ⊂ Rn

x, Cy ⊂ Ry the coefficients Rk (k = 0, p) are uniformly continuous
and bounded on Cx × Cy × Rn

z .

The condition f ∈WKp(z) provides K-continuity of the functional (2.2).

Theorem 2. If the integrand f of the variational functional (2.2) belongs to the Weierstrass
class WKp(z) then the functional Φ(y) is K-continuous everywhere on the space W 1,p(D).

Furthermore, m-th order K-differentiability is provided by introducing the following
K-pseudopolynomial Weierstrass classes.

Definition 4. Let f ∈ Cm ∩Kp(z). The mapping f is called a Weierstrass K–pseudo-
polynomial of the class WmKp(z) if there exists a representation (2.3) such that all m-th
order jets (Rk ,∇yzRk, . . . ,∇m

yzRk) of the coefficients Rk (k = 0, p) possess dominating mixed
smoothness with respect to x, y.

The condition f ∈WmKp(z) provides m-times K-differentiability of the functional (2.2).

Theorem 3. If the integrand f of the variational functional (2.2) belongs to the class
WmKp(z), m ∈ N, then the functional Φ(y) is m-times K-differentiable on the space W 1,p(D).
In addition, the classical formula of m-th order variation remains true for the K-variation of
m-th order, i. e. it holds

Φ
(m)
K (y)(h)m =

∫
D

[
m∑
ℓ=0

Cℓ
m

∂mf

∂ym−ℓ∂zℓ
(x, y,∇y)hm−ℓ · (∇h)ℓ

]
dx . (2.4)
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Let us emphasize that in cases m = 1 and m = 2, which are of practical relevance for
extremal problems, equality (2.4) reads as

Φ′
K(y)h =

∫
D

[
∂f

∂y
(x, y,∇y)h+

∂f

∂z
(x, y,∇y) · ∇h

]
dx ; (2.5)

Φ′′
K(y)(h)2 =

∫
D

[∂2f
∂y2

(x, y,∇y)h2 + 2
∂2f

∂y∂z
(x, y,∇y)h · ∇h+

+
∂2f

∂z2
(x, y,∇y) · (∇h)2

]
dx . (2.6)

In the end we want to give a reformulation of Fermat’s lemma for K-differentiable
functionals (see [6]).

Theorem 4. Let E be an arbitrary real LCS. Assume that the functional Φ : E → R attains
a K-extremum at a point y ∈ E. If Φ is K-differentiable at the point y then Φ′

K(y) = 0.

3. The generalized Euler-Ostrogradsky equation
for K-extremals in W 1,p(D)

Here we consider the variational functional

Φ(y) =

∫
D
f(x, y,∇y)dx, y(·) ∈W 1,p(D), p ∈ N, (3.1)

with additional boundary condition
y
∣∣
∂D

= y0 , (3.2)

where y0 ∈W 1,p(∂D), D is a compact domain in Rn with a Lipschitz boundary ∂D.
Note that the boundary condition (3.2) means, in particular, an additional smoothness of

y near ∂D. The definition of Sobolev space W 1,p(∂D) can be found in [8].
To determine theK-extremals of the functional (3.1)–(3.2), we need an almost everywhere-

analog of the corresponding classical (C1) necessary condition, in other words an analog of
the Euler-Ostrogradsky equation (see [10]).

Theorem 5. Let f ∈W 1Kp(z). Suppose that
(i) the functional (3.1) attains a K-extremum at the point y(·) ∈W 1,p(D),
(ii) the mapping (∂f/∂z)(x, y,∇y) belongs to the Sobolev space W 1,1(D).
Then the generalized Euler-Ostrogradsky equation

∂f

∂y
(x, y,∇y)−

n∑
i=1

∂

∂xi

(
∂f

∂zi
(x, y,∇y)

)
= 0 (3.3)

holds true almost everywhere (a.e.) on D.
In particular, condition (ii) is fulfilled if

∂f

∂z
(x, y, z) ∈ C1(Rn

x × Ry × Rn
z ) and y(·) ∈W 2,p(D) .
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Proof. 1) If f ∈W 1Kp(z) then the functional (3.1) is K-differentiable everywhere in W 1,p(D)
by virtue of Theorem 3. Therefore, in view of Theorem 4 equality Φ′

K(y)h = 0 holds for any
h ∈W 1,p(D). In detail, this means that∫

D

[
∂f

∂y
(x, y,∇y)h+

∂f

∂z
(x, y,∇y) · ∇h

]
dx = 0 (∀h ∈W 1,p(D)). (3.4)

2) Now, note that the condition (∂f/∂z)(x, y,∇y) ∈W 1,1(D) implies representability of
this function by means of indefinite Lebesgue integrals of its partial derivatives with respet to
xi, i = 1, n. Applying now the Green formula [1] to the second summand in (3.4) and taking
into account h|∂D = 0 we obtain

Φ′
K(y)h =

∫
D

∂f

∂y
(x, y,∇y)hdx+

n∑
i=1

∫
D

∂f

∂zi
(x, y,∇y) · ∂h

∂xi
dx

 =

=

∫
D

∂f

∂y
(x, y,∇y)hdx+

n∑
i=1

[∮
∂D

h · ∂f
∂zi

(x, y,∇y) cos(−→n ,−→ei )dl−

−
∫
D

∂

∂xi

(
∂f

∂zi
(x, y,∇y)

)
hdx

]
= 0 , (3.5)

where −→n =
n∑

k=1

cos(−→n ,−→ek)−→ek stands for the external normal vector onD. Since the line integral

in (3.5) vanishes we get therefrom

Φ′
K(y)h =

∫
D

∂f∂y (x, y,∇y)−
n∑

i=1

∂

∂xi

(
∂f

∂zi
(x, y,∇y)

)
︸ ︷︷ ︸

L(f)(y)

hdx = 0 . (3.6)

3) Next we show that identity (3.6) implies the equality L(f)(y) = 0 almost everywhere on
D. Assume, on the contrary, L(f)(y)(x0) ̸= 0 at some point x0 ∈ D of approximate continuity
of L(f)(y). Without loss of generality we may suppose L(f)(y)(x0) > 0. Then it follows∫

Oδ(x0)

L(f)(y) dx > 0

for δ > 0 small enough, where Oδ(x0) is a δ–neighborhood of the point x0. We choose δ′ < δ
as much as close to δ such that∫

A

L(f)(y)dx <

∫
Oδ′ (x0)

L(f)(y)dx , (3.7)

where A = Oδ(x0)\Oδ′(x0). Now, we put

h(x) =


1 , if x ∈ Oδ′(x0)

0 , if x /∈ Oδ(x0) , h ∈W
1,p
0 (D) .

”radially linear” , if x ∈ Oδ(x0)\Oδ′(x0)
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We have∫
D

L(f)(y)hdx =

=

∫
Oδ(x0)

L(f)(y)hdx =

∫
A

L(f)(y)hdx+

∫
Oδ′ (x0)

L(f)(y)hdx =: I1 + I2. (3.8)

By virtue of (3.7) we get |I1| ≤
∫
A

|L(f)(y)|dx <
∫

Oδ′ (x0)

L(f)(y)dx = I2. Together with (3.8)

this implies
∫
D

L(f)(y)hdx > 0. The last inequality contradicts condition (3.6).

4) If, in particular, (∂f/∂z)(x, y, z) ∈ C1(Rn
x × Ry × Rn

z ) then the mapping f locally
satisfies a Lipschitz condition. For y(·) ∈W 2,p(D) the function x 7→ f(x, y,∇y) belongs to
the space W 1,p(D). Hence, the composition (∂f/∂z)(x, y,∇y) belongs to W 1,1(D). Thus,
condition (ii) of the theorem is fulfilled.

In what follows solutions of the generalized Euler-Ostrogradsky equation (3.3) with
condition (ii) of Theorem 5 are called K-extremals of the variational functional (3.1). Note,
in addition, that equation (3.3) is satisfied a priori at any point of approximate continuity of
∇y.

4. Smoothness of K-extremals in Sobolev spaces W 1,p

It is well known that under sufficiently general conditions in the classical C1-case a solution
of the Euler-Ostrogradsky equation even belongs to the class C2. We look at a similar problem
in the Sobolev case (see [4]). Here the question is whether a solution of the generalized Euler-
Ostrogradsky equation belongs to the space W 2,p under natural conditions. A related problem
is whether such a solution possess at least some additional smoothness properties.

Our first result in this direction is not immediately connected with the Euler-Ostrogradsky
equation and Sobolev spaces, respectively .

Theorem 6. Let f : Rn
x × Ry × Rn

z → R, f ∈ C2, and let the function y(·) : D → R be
continuous and a.e. differentiable on D. Suppose that
(i) the gradient (∂f/∂z)(x, y,∇y) is differentiable a.e. on D;

(ii) the Hessian (∂2f/∂z2)(x, y,∇y) is non-degenerate a.e. on D, i.e.

det

(
∂2f

∂z2
(x, y,∇y)

)
̸= 0 a. e.

Then the function y(·) is twice approximately differentiable a.e. on D. In addition, it holds

∇2
ap(y)(x) ·∆x = ∇ap(∇y)(∆x) =

(
∂2f

∂z2
(x, y,∇y)

)−1

·

·
[
∇
(
∂f

∂z
(x, y,∇y)

)
·∆x− ∂2f

∂z∂x
(x, y,∇y) ·∆x− (∇y,∆x) ∂

2f

∂z∂y
(x, y,∇y)

]
. (4.1)
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Proof. 1) We fix i = 1, n and apply the mean value theorem [23] to the function

∂f

∂zi
= Fi(x, y, z) (4.2)

on the vector interval [(x, y, z); (x+∆x, y +∆y, z +∆z)] = [h;h+∆h]. It follows

∂f

∂zi
(x+∆x, y +∆y, z +∆z)− ∂f

∂zi
(x, y, z) =

(
∇
(
∂f

∂zi
(ξ)

)
,∆h

)
, (4.3)

for some ξ ∈ [h;h+∆h]. Because any measurable function is approximately continuous almost
everywhere ([3]) we can choose a point x ∈ D in which ∇y exists and is approximately
continuous. Let the conditions (i)–(ii) of the theorem be satisfied. We choose a measurable
subset Ai ⊂ D having x as a density point such that ∇y(x+∆x) → ∇y(x) if x+∆x→ x in
Ai . Now we substitute ∆y = y(x+∆x)− y(x) and ∆z = = ∇y(x+∆x)−∇y(x) in (4.3).
Moreover, ∆y → 0 as ∆x→ 0 by continuity of y(·) and ∆z → 0 as x+∆x→ x in Ai in view
of approximate continuity of ∇y at the point x. Thus, we obtain

∂f

∂zi
(x+∆x, y +∆y, z +∆z)− ∂f

∂zi
(x, y, z) =

=

(
∂2f

∂zi∂x
(ξ),∆x

)
+

∂2f

∂zi∂y
(ξ) ·∆y +

(
∂2f

∂zi∂z
(ξ),∆(∇y)

)
. (4.4)

Using notation (4.2) we find

Fi(x+∆x)− Fi(x) =

(
∂2f

∂zi∂x
(ξ),∆x

)
+

∂2f

∂zi∂y
(ξ)∆y +

(
∂2f

∂zi∂z
(ξ),∆(∇y)

)
. (4.5)

Now we determine the principal linear part of (4.5). It holds

Fi(x+∆x)− Fi(x) = (∇Fi,∆x) + o(∥∆x∥) =
(
∂2f

∂zi∂x
(ξ),∆x

)
+

+
∂2f

∂zi∂y
(ξ) · ((∇y,∆x) + o(∥∆x∥)) +

(
∂2f

∂zi∂z
(ξ), (∇ap(∇y) ·∆x+ o (∥∆x∥))

)
=

=


 ∂2f

∂zi∂x
(x) +

(
∂2f

∂zi∂x
(ξ)− ∂2f

∂zi∂x
(x)

)
︸ ︷︷ ︸

o(1)

 ,∆x
+

+

 ∂2f

∂zi∂y
(x) +

(
∂2f

∂zi∂y
(ξ)− ∂2f

∂zi∂y
(x)

)
︸ ︷︷ ︸

o(1)

 · ((∇y,∆x) + o(∥∆x∥))+

+


 ∂2f

∂zi∂z
(x) +

(
∂2f

∂zi∂z
(ξ)− ∂2f

∂zi∂z
(x)

)
︸ ︷︷ ︸

o(1)

 , (∇ap(∇y)∆x+ o(∥∆x∥))

 =
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=

([
∂2f

∂zi∂x
(x) + α(ξ, x)

]
,∆x

)
+

[
∂2f

∂zi∂y
(x) + β(ξ, x)

]
· ((∇y,∆x) + o(∥∆x∥))

+

([
∂2f

∂zi∂z
(x) + γ(ξ, x)

]
, (∇ap(∇y)∆x+ o(∥∆x∥))

)
,

where α(ξ, x) → 0, β(ξ, x) → 0, γ(ξ, x) → 0 as ∆x→ 0 in Ai − x.
Neglecting the small terms we are led to the existence of the approximate gradient of Fi

at x and to the equality

(∇Fi,∆x)︸ ︷︷ ︸
dFi(·,∆x)

=

=

(
∂2f

∂zi∂x
(x),∆x

)
+

∂2f

∂zi∂y
(x) · (∇y,∆x) +

(
∂2f

∂zi∂z
(x),∇ap(∇y) ·∆x

)
, (4.6)

respectively.

2) Next, we observe that the set A =
n∩

i=1
Ai also has x as its density point. Thus, via the

limiting argument ∆x→ 0 in (A− x) we see that all equalities (4.6), i = 1, n, are fulfilled. As
a result we have the system

{
(∇Fi,∆x)−

(
∂2f

∂zi∂x
(x),∆x

)
− ∂2f

∂zi∂y
(x)(∇y,∆x) =

=

(
∂2f

∂zi∂z
(x), (∇ap(∇y),∆x)

)}n

i=1
. (4.7)

Now, we introduce the matrices

A =

(
∇Fi −

∂2f

∂zi∂x
(x)− ∂2f

∂zi∂y
(x) · ∇y

)n

i=1

, B =

(
∂2f

∂zi∂z
(x)

)n

i=1

.

Then the system (4.7) can be rewritten as A ·∆x = B · (∇ap(∇y) ·∆x). Therefore it follows
∇2

ap(y) ·∆x = ∇ap(∇y) ·∆x = B−1 · (A ·∆x) = (B−1 ·A) ·∆x, that is

∇2
ap(y)(x) ·∆x = ∇ap(∇y)(x) ·∆x =

(
∂2f

∂z2
(x, y,∇y)

)−1

·

·
[
∇
(
∂f

∂z
(x, y,∇y)

)
·∆x− ∂2f

∂z∂x
(x, y,∇y) ·∆x− (∇y,∆x) ∂

2f

∂z∂y
(x, y,∇y)

]
. (4.8)

The last expression can be rewritten in matrix form as

∇2
ap(y)(x) =

(
∂2f

∂z2
(x, y,∇y)

)−1

·

·
[
∇
(
∂f

∂z
(x, y,∇y)

)
− ∂2f

∂z∂x
(x, y,∇y)− (∇y, ·) ∂

2f

∂z∂y
(x, y,∇y)

]
. (4.9)
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As an application we can establish a result on some strengthening of smoothness of
K-extremals in Sobolev spaces.

Corollary 1. Under the assumptions of Theorem 6 let the function y(·) ∈W 1,p(D),
y
∣∣
∂D

= y0, be a K-extremal of the functional (3.1). Then, at all points x ∈ D of both
approximate continuity of the gradient ∇y(x) and non-degeneracy of the Hessian
(∂2f/∂z2)(x, y,∇y) the trace function

Tr

(
∂2f

∂z2
(x, y,∇y) · ∇2

ap(y)(x)

)
is approximately continuous as well. Moreover, equality

Tr

(
∂2f

∂z2
(x, y,∇y) · ∇2

ap(y)(x)

)
=

=
∂f

∂y
(x, y,∇y)− Tr

(
∂2f

∂z∂x
(x, y,∇y) + (∇y, ·) · ∂

2f

∂z∂y
(x, y,∇y)

)
(4.10)

holds true.

Proof. Multiplying both parts of equality (4.9) by (∂2f/∂z2)(x, y,∇y) from the left side we
get

∂2f

∂z2
(x, y,∇y) · ∇2

ap(y)(x) =

= ∇
(
∂f

∂z
(x, y,∇y)

)
− ∂2f

∂z∂x
(x, y,∇y)− (∇y, ·) · ∂

2f

∂z∂y
(x, y,∇y) . (4.11)

Applying the trace operator to both sides of (4.11), we obtain the equality

Tr

(
∇
(
∂f

∂z
(x, y,∇y)

))
=

n∑
i=1

∂

∂xi

(
∂f

∂zi
(x, y,∇y)

)
.

This yields equality (4.10) using the generalized Euler-Ostrogradsky equation (3.3). In view
of the approximate continuity of right-hand side of (4.10) the trace function

Tr
(
(∂2f/∂z2)(x, y,∇y) · ∇2

ap(y)(x)
)

is approximately continuous at those points where the gradient ∇y(x) is approximately
continuous as well.

The previous results can be essentially improved under the assumption of usual almost
everywhere continuity of the gradient of K-extremal. In particular, we can show the usual
repeated almost everywhere differentiability of K-extremal (i.e., almost everywhere differenti-
ability of usual gradient of K-extremal).
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Theorem 7. Under the assumptions of Theorem 6 let the gradient ∇y(x) be continuous
almost everywhere on D. Then the following statements hold true.
(i) There exists ∇2(y)(x) a.e. on D. Moreover, we have

∇2(y)(x) =

(
∂2f

∂z2
(x, y,∇y)

)−1

·

·
(
∇
(
∂f

∂z
(x, y,∇y)

)
− ∂2f

∂z∂x
(x, y,∇y)− (∇y, ·) ∂

2f

∂z∂y
(x, y,∇y)

)
. (4.12)

(ii) It holds the formula

Tr

(
∂2f

∂z2
(x, y,∇y) · ∇2(y)(x)

)
= Tr

(
∇
(
∂f

∂z
(x, y,∇y)

))
−

− Tr

(
∂2f

∂z∂x
(x, y,∇y) + (∇y, ·) · ∂

2f

∂z∂y
(x, y,∇y))

)
(4.13)

for the trace function Tr
(
(∂2f/∂z2)(x, y,∇y) · ∇2(y)(x)

)
.

(iii) If, in particular, y(·) satisfies the generalized Euler-Ostrogradsky equation (3.3), then the
function Tr

(
(∂2f/∂z2)(x, y,∇y) · ∇2(y)(x)

)
is also continuous at all points of continuity of

∇y(x) and the trace formula (4.10) can be rewritten as

Tr

(
∂2f

∂z2
(x, y,∇y) · ∇2(y)(x)

)
=

=
∂f

∂z
(x, y,∇y)− Tr

(
∂2f

∂z∂x
(x, y,∇y) + (∇y, ·) · ∂

2f

∂z∂y
(x, y,∇y))

)
. (4.14)

Proof. (i) Extracting the principal linear part in (4.5) and passing to the limit as ∆x→ 0
arbitrarily we find the system of equations

{
(∇Fi,∆x)− (

∂2f

∂zi∂x
(x),∆x)− ∂2f

∂zi∂y
(x) · (∇y,∆x) =

=

(
∂2f

∂zi∂x
(x),∇(∇y) ·∆x

)}n

i=1
. (4.15)

Equality (4.12) follows immediately from (4.15).
(ii) Multiplying both sides of (4.12) by (∂2f/∂z2)(x, y,∇y) · ∇2(y)(x) from the right side

and passing to traces we easily obtain equality (4.13).
(iii) Suppose, in particular, that y(·) satisfies the generalized Euler-Ostrogradsky

equation (3.3). Then equality (4.13) can be rewritten as (4.14). Moreover, the function

Tr
(
(∂2f/∂z2)(x, y,∇y) · ∇2(y)(x)

)
is continuous simultaneously with ∇y(x).

Now, we consider an important special case of the integrand which leads to explicit
representations of weighted and usual Laplacians of K-extremals y(·).
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Corollary 2. Under the assumptions of Theorem 7 let the integrand f be given as

f(x, y, z) = P (x, y) +Q(x, y) · (z) +R(x, y) · (z)2 .

Suppose that both the coefficients

P : D × Ry → R, Q : D × Ry → L1(Rn
z )

∼= Rn, R : D × Ry → L2(Rn
z )

∼=Mn(R),

(where Mn(R) is set of n × n matrices on R) and the gradient ∇y are continuous almost
everywhere in D. Then the following statements hold true.
(i) The trace function (4.13) can be represented as

Tr
(
R(x, y) · ∇2(y)(x)

)
= Tr

(
∇(

∂f

∂z
(x, y,∇y))

)
−

− Tr

(
∂2f

∂z∂x
(x, y,∇y) + (∇y, ·) · ∂

2f

∂z∂y
(x, y,∇y))

)
. (4.16)

In addition, in the special case of a diagonal matrix R(x, y) = diag (ρii(x, y))
n
i=1

representation (4.16) can be rewritten as

Tr
(
R(x, y) · ∇2(y)(x)

)
=

n∑
i=1

ρii(x, y) ·
∂2y

∂x2i
=: ∆ρy(x) =

= Tr

(
∇(

∂f

∂z
(x, y,∇y))

)
− Tr

(
∂2f

∂z∂x
(x, y,∇y) + (∇y, ·) · ∂

2f

∂z∂y
(x, y,∇y))

)
. (4.17)

Here ∆ρy denotes the weighted Laplacian of y with the weights {ρii(x, y)}ni=1. In particular,
in case of the unit matrix R(x, y) ≡ E we obtain the representation of the usual Laplacian ∆y

∆y(x) = Tr

(
∇(

∂f

∂z
(x, y,∇y))

)
−

− Tr

(
∂2f

∂z∂x
(x, y,∇y) + (∇y, ·) · ∂

2f

∂z∂y
(x, y,∇y))

)
. (4.18)

(ii) Let y(·) be a K-extremal of the functional (3.1) and let the gradient ∇y be continuous a.e.
on D. Then both the weighted Laplacian ∆ρy and the usual Laplacian ∆y are continuous a.e.
on D as well. Moreover, the right-hand sides of representations (4.17)–(4.18) read as

∂f

∂y
(x, y,∇y)− Tr

(
∂2f

∂z∂x
(x, y,∇y) + (∇y, ·) · ∂

2f

∂z∂y
(x, y,∇y))

)
. (4.19)

Proof. The corollary is an immediate consequence of Theorem 7.

We have shown that the solutions of the generalized Euler-Ostrogradsky equation possess
some additional smoothness properties. However, in spite of this fact the question whether or
not K-extremals belong to the Sobolev space W 2,p must be answered negatively in general.
Let us discuss an appropriate counter example.
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Example 1. Let us consider the most simple variational functional

Φ(y) =

∫
D

|∇y(x)|2dx,
(
y(·) ∈W 1,2(D), D = [0; 1]× [0; 1]

)
.

Here f(x, y, z) = (yx1)
2 + (yx2)

2,
∂f

∂y
= 0;

∂f

∂z1
= 2yx1 ;

∂f

∂z2
= 2yx2 ;

∂

∂x1

(
∂f

∂z1

)
= 2yx1x1 ;

∂

∂x2

(
∂f

∂z2

)
= 2yx2x2 . Hence, the generalized Euler-Ostrogradsky equation reads as

yx1x1 + yx2x2

a.e.
= 0. (4.20)

Let χ(t) be the "Cantor ladder"on [0; 1] (see, e.g., [2]). We put

y0(x) =

x1∫
0

χ(t)dt+

x2∫
0

χ(t)dt, 0 ≤ x1 ≤ 1, 0 ≤ x2 ≤ 1 .

Then (y0)x1 = χ(x1); (y0)x2 = χ(x2); (y0)x1x1 = χ′(x1) = 0 a.e. on [0; 1] ⊂ Rx1 ;
(y0)x2x2 = χ′(x2) = 0 a.e. on [0; 1] ⊂ Rx2 . Hence, y0(·) satisfies the generalized Euler-Ostro-
gradsky equation (4.20). Nevertheless, y0(·) /∈W 2,2(D) because ∇y0(·) /∈W 1,2(D). Thus, in
contrast to the classical C1-case an essential strengthening of smoothness of K-extremals in
Sobolev case does not occur.

5. Generalized Legendre necessary conditions for K-extrema

Definition 5. Let φ be a quadratic form acting on a real vector space E. We call φ the

scalarly non-negative form (φ
scal
≥ 0) if the condition φ < 0 is not fulfilled, that is, if there

exists h ∈ E (h ̸= 0) such that φ(h) ≥ 0.

Theorem 8. Assume that the variational functional (3.1) attains a K-minimum at
y(·) ∈W 1,p(D). Moreover, suppose that
(i) the integrand f belongs to the Weierstrass class W 2Kp(z);
(ii) the mapping

(
∂2f/∂y∂z

)
(x, y,∇y) belongs to the Sobolev space W 1,1(D).

Then the generalized Legendre necessary condition

∂2f

∂z2
(x, y(x),∇y(x))

scal
≥ 0 (5.1)

is fulfilled for the K-extremal y(·) almost everywhere on D.

Proof. We transform the canonical expression of the second K-variation of Φ

Φ′′
K(y)(h)2 =

∫
D

[∂2f
∂y2

(x, y,∇y)h2 + 2

n∑
i=1

∂2f

∂y∂zi
(x, y,∇y) · h · ∂h

∂xi
+

+
∂2f

∂z2
(x, y,∇y) · (∇h)2

]
dx

(
h ∈W 1,p(D)

)
. (5.2)
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To this end we use the repeated K-differentiability of Φ ([17], Theorem 2) and condition (ii)
of the theorem. Application of Green’s formula ([1]) to the second summand on the right-hand
side in (5.2) and taking into account the boundary condition

(y|∂D = y0) ⇒ (h|∂D = 0)

we obtain

Φ′′
K(y)(h)2 =

∫
D

∂2f

∂y2
(x, y,∇y)h2 +

n∑
i=1

[∮
∂D

h2 · ∂2f

∂yi∂zi
(x, y,∇y) cos(−→n ,−→ei )dl−

−
∫
D

∂

∂xi

(
∂2f

∂y∂z
(x, y,∇y)

)
h2dx

]
+

∫
D

∂2f

∂z2
(x, y,∇y) · (∇h)2dx =

=

∫
D

([∂2f
∂y2

(x, y,∇y)−
n∑

i=1

∂

∂xi

(
∂2f

∂y∂z
(x, y,∇y)

)]
h2+

+

∫
D

∂2f

∂z2
(x, y,∇y) · (∇h)2

)
dx . (5.3)

Here −→n =
n∑

k=1

cos(−→n ,−→ek)ek stands for the external normal vector on ∂D. We give the proof by

contradiction. Suppose that (5.1) is not fulfilled. Then there exists a subset Ã1
0 ⊂ D, µÃ1

0 > 0
such that inequality

φ(x) :=
∂2f

∂z2
(x, y(x),∇y(x)) < 0

holds for any x ∈ Ã1
0. The last inequality can be replaced by

ψ(x, h̃) = φ(x) · (h̃)2 < 0

for any x ∈ Ã1
0, h̃ ∈ Rn

z , ∥h̃∥ = 1. Next, we choose a compact subset A1
0 ⊂ Ã1

0 with positive
measure µA1

0 > 0. Applying the Weierstrass theorem to the function ψ(x, h̃) on the compact
set A1

0 × (∥h̃∥ = 1) we obtain the inequality

ψ(x, h̃) ≤ −k0 < 0 (∀x ∈ A1
0 , ∥h̃∥ = 1) .

Hence, using the second order homogeneity of ψ in h̃ it follows immediately

ψ(x, h̃) ≤ −k0 · ∥h̃∥2 (∀x ∈ A1
0 , h̃ ∈ Rn

z ) .

Here k0 does not depend on the choice of x ∈ A1
0 and h̃ ∈ Rn

z . In particular, this implies

∂2f

∂z2
(x, y(x),∇y(x)) · (∇h(x),∇h(x)) ≤ −k20 · ∥∇h(x)∥2 (x ∈ A1

0) .

Now, we choose a set A2
0 ⊂ D with µA2

0 > µD − µA1
0 such that the inequality

∂2f

∂y2
(x, y,∇y)−

n∑
i=1

∂

∂xi

(
∂2f

∂y∂z
(x, y,∇y)

)
≤ C2

0 <∞
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holds for all x ∈ A2
0. Then the set A0 := A1

0 ∩A2
0 has a positive measure as well.

Next, let x0 be an arbitrary density point of A0 ([3]). We choose a neighborhood Oδ0(x0)
(δ0 > 0) such that the inequality

µ(A0 ∩ Oδ(x0))

µ(Oδ(x0))
> 1− ε0 (0 < ε0 < 1)

holds for δ < δ0. Now we define a function h0(x) by

h0(x) =


√
δ , as x = x0;
0 , as ∥x− x0∥ ≥ δ;

is ”radially linear” , as ∥x− x0∥ < δ.

Then, in a δ-neighborhood 0 < ∥x− x0∥ < δ we get

h20 ≤ δ, ∇h0 = (± 1√
δ
, . . . ,± 1√

δ
). (5.4)

Combining (5.4) and (5.3) we find

Φ′′
K(y)(h0)

2 =

∫
D

([∂2f
∂y2

(x, y,∇y)−
n∑

i=1

∂

∂xi

(
∂2f

∂y∂z
(x, y,∇y)

)]
h20+

+
∂2f

∂z2
(x, y,∇y)(∇h0,∇h0)

)
dx ≤

∫
Oδ(x0)

([∂2f
∂y2

(x, y,∇y)−

−
n∑

i=1

∂

∂xi

(
∂2f

∂y∂z
(x, y,∇y)

)]
h20 +

∂2f

∂z2
(x, y,∇y)(∇h0,∇h0)

)
dx ≤

≤ C2
0 · δ · [(1− ε0) · 2δ + [(1− ε0) · 2δ ·

h

δ
· (−k20) =

= 2C2
0 (1− ε0) · δ2 + 2 · (1− ε0) · h · (−k20) < 0

for δ > 0 small enough. Finally, using Taylor’s formula of second order in direction h0 we
immediately obtain the inequality

Φ(y + th0)− Φ(y) < 0

for t > 0 small enough. Hence, Φ does not realize a minimum on any absolutely convex compact
Cε ⊂W 1,p(D) for which Cε

∩
R · h0 ̸= {0} holds. Therefore, Φ does not possess a K-minimum

at the point y(·). The last result contradicts the assumption of the theorem.

At the end, let us consider an example of a two-dimensional variational functional having
a non-smooth K-extremal but satisfying the generalized Legendre necessary condition.

Example 2. We put

Φ(y) =

∫ 1

−1

∫ 1

−1

(∫ √
y2x1+y2x2

0
cos2t2dt

)
dx (y ∈W 1,2(D), D = [−1; 1]× [−1; 1]).
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1. In this case we have

f(z1, z2) =

∫ √
z21+z22

0
cos2t2dt.

Thus we obtain

1)
∂f

∂zi
=

zi√
z21 + z22

· cos2(2(z21 + z22));

2)
∂2f

∂z2i
= cos2(z21 + z22)

z2i√
(z21 + z22)

3
− sin 2(z21 + z22)

2z2i√
z21 + z22

;

∂2f

∂zi∂zj
= − cos2(z21 + z22)

zi · zj√
(z21 + z22)

3
− sin 2(z21 + z22)

2zi · zj√
z21 + z22

(i, j = 1, 2; i ̸= j).

We introduce the mapping

φ(zi, zj) =
f(z1, z2)

z21 + z22
.

Since
φ(∞) = φ′

zi(∞) = φ′′
zizj (∞) = 0 (i, j = 1, 2)

the jet (φ, ∂φ/∂z, ∂2φ/∂z2) possesses dominating mixed continuity. Hence f ∈W 2K2(z).
Moreover, (∂f/∂z)(x, y,∇y) ∈W 1,1(D).
2. It is evident that Φ(y) attains a minimum at any point y(·) ∈W 1,2 satisfying the condition

|∇y|2 = y2x1
+ y2x2

=
π

2
+ πk almost everywhere (k ∈ Z).

We consider the special point of minimum y0(x1, x2) =
√

π
4 (|x1| + |x2|). In this case the

generalized Euler-Ostrogradsky equation reads as

∂

∂x1
(

z1√
z21 + z22

· cos2(2(z21 + z22))) +
∂

∂x2
(

z2√
z21 + z22

· cos2(2(z21 + z22)))
a.e.
= 0 . (5.5)

Because of

∂y0
∂xi

=

√
π

4
sgnxi (i = 1, 2), |∇y0|2 =

(
∂y0
∂x1

)2

+

(
∂y0
∂x2

)2

=
π

2
a.e.

the function y0(·) satisfies equation (5.5).
3. Finally, in the case under consideration we obtain

∂2f

∂z2
(x, y0(x),∇y0(x))

a.e.
=

=

 y2x2 cos2 |∇y|2

|∇y|3 − 2y2x1 sin 2|∇y|2

|∇y| −yx2yx1 cos2 |∇y|2
|∇y|3 − 2yx1yx2 sin 2|∇y|2

|∇y|

−yx2yx1 cos2 |∇y|2
|∇y|3 − 2yx1yx2 sin 2|∇y|2

|∇y|
y2x1 cos2 |∇y|2

|∇y|3 − 2y2x2 sin 2|∇y|2

|∇y|

 .

This implies
∂2f

∂z2
(x, y0(x),∇y0(x))

a.e.
= 2π ·

(
0 0
0 0

)
scal
≥ 0 a.e. on D

for the K-extremal y0(·). Thus, y0 satisfies the generalized Legendre necessary condition but
it does not satisfy the usual one because of nonsmoothness.

ISSN 0203–3755 Динамические системы, том 3(31), No.1-2



84 I. V. ORLOV, E.V. BOZHONOK, E.M.KUZMENKO

References

1. Azizov T.Ya., Kopachevsky N.D. Abstract Green formula and it’s application. — Simferopol: FLP
«Bondarenko O.A.», 2011. — 145 p. (in Russian)

2. Berezansky Yu.M., Sheftel Z.G., Us G. F. Functional Analysis, Vol.1. — Basel–Boston–Berlin:
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Birkhäuser. — 2009. — Vol. 190. — P. 141–155.
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